Volume 49 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
LI J X,DING H B,WANG C,et al. A new overreading model for wet gas vortex metering considering entrained droplet flow parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):815-824 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0364
Citation: LI J X,DING H B,WANG C,et al. A new overreading model for wet gas vortex metering considering entrained droplet flow parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):815-824 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0364

A new overreading model for wet gas vortex metering considering entrained droplet flow parameters

doi: 10.13700/j.bh.1001-5965.2021.0364
Funds:  National Natural Science Foundation of China (51876143,61873184,61627803); The Fundamental Research Funds for the Central Universities of Civil Aviation University of China (3122021036)
More Information
  • Corresponding author: E-mail:hbding@tju.edu.cn
  • Received Date: 01 Jul 2021
  • Accepted Date: 20 Aug 2021
  • Available Online: 02 Jun 2023
  • Publish Date: 03 Sep 2021
  • To improve the wet gas metering accuracy by using a vortex flowmeter, aiming at the problems of low prediction accuracy and narrow application scope of the traditional meter overreading correlations, a meter overreading model based on flow parameters of the entrained droplets (entrainment fraction and droplet size) was proposed. To conduct experimental studies on different entrained droplet conditions, the annular mist flow loop based on atomizing mixing was developed, and the optical imaging system was built to measure the droplet diameter and distribution. The dimensionless scaling parameters were discovered by combining the annular mist flow pattern with the vortex meter overreading mechanism and taking into account the droplet-liquid film mass transfer and the droplet-vortex coupling mechanism. The meter overreading model was developed with liquid mass loading, Weber number and Stokes number, taking the effects of the entrained droplet parameters and the carried gas parameters (density and velocity) into consideration, thus, its application scope is expanded. Finally, the performance of other overreading correlations was evaluated and analyzed by the differences of the entrained droplet parameters in their experimental conditions and the model assumptions. The results indicate that the proposed model provides a uniform prediction for the meter overreading, the relative deviations are within ±1.0% error band, both the predicted accuracy and the model extensibility are greatly improved compared with other overreading correlations.

     

  • loading
  • [1]
    盛碧霞, 冀海峰, 王保良, 等. 基于新型C4D的小管道气液两相流流型辨识方法[J]. 北京航空航天大学学报, 2017, 43(11): 2273-2279. doi: 10.13700/j.bh.1001-5965.2017.0063

    SHENG B X, JI H F, WANG B L, et al. Flow pattern identification method of gas-liquid two-phase flow in ductule based on new C4D[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2273-2279(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0063
    [2]
    宋军辉, 宋保银, 张钊, 等. 逆载对管道内汽水两相流临界热流密度的影响[J]. 北京航空航天大学学报, 2017, 43(4): 842-848. doi: 10.13700/j.bh.1001-5965.2016.0331

    SONG J H, SONG B Y, ZHANG Z, et al. Effect of inverse load on critical heat flux of steam-water two-phase flow in a tube[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 842-848(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0331
    [3]
    BRIL J P, ARIRACHAKARAN S J. State of the art in multiphase flow[J]. Journal of Petroleum Technology, 1992, 44(5): 538-541. doi: 10.2118/23835-PA
    [4]
    OSHINOWO T, CHARLES M E. Vertical two-phase flow: Part I. Flow pattern correlations[J]. The Canadian Journal of Chemical Engineering, 1974, 52(1): 25-35. doi: 10.1002/cjce.5450520105
    [5]
    MEHDIZADEH P, MARRELLI J, TING V C. Wet gas metering: Trends in applications and technical developments[C]//SPE Annual Technical Conference and Exhibition. San Antordo: Society of Petroleum Engineers, 2002: 1-14.
    [6]
    STEVEN R. Wet gas metering[D]. Scotland: University of Strathclyde, 2001.
    [7]
    LI J X, WANG C, DING H B, et al. Online measurement of wet gas by modelling frequency and amplitude characteristics of a vortex flowmeter[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6): 3666-3678.
    [8]
    LI J X, WANG C, DING H B, et al. EMD and spectrum-centrobaric-correction-based analysis of vortex street characteristics in mist annular flow of wet gas[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(5): 1150-1160. doi: 10.1109/TIM.2018.2790598
    [9]
    LI J X, WANG C, DING H B. Characteristics of vortex flowmeter in vapor-liquid mist flow[C]//International Instrumentation and Measurement Technology Conference. Houston: IEEE Instrumentation and Measurement Society, 2018: 1-6.
    [10]
    WANG C, ZHANG Z X, DING H B, et al. Measurement property of vortex flowmeter in wet gas flow using mist flow apparat[C]// International Instrumentation and Measurement Technology Conference. Houston: IEEE Instrumentation and Measurement Society, 2018: 1-6.
    [11]
    SUN H J, LUO Y K, DING H B, et al. Experimental investigation on atomization properties of impaction-pin nozzle using imaging method analysis[J]. Experimental Thermal and Fluid Science, 2021, 122: 110322. doi: 10.1016/j.expthermflusci.2020.110322
    [12]
    WANG C, DING H B, WANG H. Thermodynamic model and dynamic temperature compensation positive-pressure-based sonic nozzle gas flow standard[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(5): 1154-1165. doi: 10.1109/TIM.2012.2234599
    [13]
    YANG Y, CHUNG J N, TROUTT T R, et al. The effects of particles on the stability of a two-phase wake flow[J]. International Journal of Multiphase Flow, 1993, 19(1): 137-149. doi: 10.1016/0301-9322(93)90029-T
    [14]
    SAWANT P, ISHIII M, MORI M. Droplet entrainment correlation in vertical upward co-current annular two-phase flow[J]. Nuclear Engineering and Design, 2008, 238(6): 1342-1352. doi: 10.1016/j.nucengdes.2007.10.005
    [15]
    LI J X, WANG C, DING H B, et al. A new overreading model for wet gas vortex metering based on vorticity transport mechanism[J]. Measurement, 2020, 162: 107884. doi: 10.1016/j.measurement.2020.107884
    [16]
    HUSSEIN I B, OWEN I. Calibration of flowmeters in superheated and wet steam[J]. Flow Measurement and Instrumentation, 1991, 2(4): 209-215. doi: 10.1016/0955-5986(91)90003-A
    [17]
    PAN L, HANRATTY T J. Correlation of entrainment for annular flow in vertical pipes[J]. International Journal of Multiphase Flow, 2002, 28(3): 363-384. doi: 10.1016/S0301-9322(01)00073-8
    [18]
    HALL A, STEVEN R. A discussion on vortex meter technologies with wet gas flows[C]// Proceedings of 7th South East Asia Hydrocarbon Flow Measurement Workshop. Kuala Lumpur: TUV National Engineering Laboratory, 2008: 1-20.
    [19]
    贾云飞, 孔德仁. 基于波理论的涡街流量计雾状流测量模型[J]. 化工学报, 2009, 60(3): 601-607. doi: 10.3321/j.issn:0438-1157.2009.03.010

    JIA Y F, KONG D R. Fog two-phase flow correlation for vortex flow meter based on theory of vortex street wave[J]. CIESC Journal, 2009, 60(3): 601-607(in Chinese). doi: 10.3321/j.issn:0438-1157.2009.03.010
    [20]
    STEWART D G, HODGES D, BROWN G J. Recent research results in wet gas flow[C]//Proceedings of South East Asia Hydrocarbon Flow Measurement Workshop. Kuala Lumpur: TUV National Engineering Laboratory, 2004: 1-13.
    [21]
    BURGER M, SCHMEHL R, KOCH R, et al. DNS of droplet-vortex interaction with a Karman vortex street[J]. International Journal of Heat and Fluid Flow, 2006, 27(2): 81-191.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views(321) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return