Citation: | FANG Yizhong, LU Yuting, HAN Tuo, et al. Design of missile incremental adaptive fault tolerant control system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 920-928. doi: 10.13700/j.bh.1001-5965.2021.0454(in Chinese) |
Aerodynamic parameter uncertainties and actuator failures in missile flight will severely affect the stability and operation of the flight system. Therefore, we investigate an incremental adaptive passive fault tolerant control method to ensure safe control in missile flight as well as effectiveness and reliability of the control algorithm. A control oriented coupled attitude dynamics model was presented. In order to avoid system uncertainties and actuator failures, a passive fault tolerant control law was designed based on incremental nonlinear dynamic inversion. An incremental nonlinear dynamic inversion-based adaptive fault tolerant control law was established by combining the adaptive sliding mode control method and the incremental nonlinear dynamic inversion approach. Meanwhile, the residual of the system was analyzed and compared. A typical full trajectory attitude tracking mission was conducted to verify the control performance under actuator faults. Simulation results show that the proposed system can ensure robustness and fault tolerance without the fault diagnosis knowledge, which could eventually achieve safe and reliable flight control.
[1] |
陈翔, 董立勇, 于宁宇. 美军导弹防御拦截武器发展趋势分析[J]. 军事文摘, 2020(23): 44. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWN202023014.htm
CHEN X, DONG L Y, YU N Y. Analysis on the development trend of US missile defense interception weapons[J]. Military Digest, 2020(23): 44(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSWN202023014.htm
|
[2] |
ZHANG Y M, JIANG J. Bibliographical review on reconfigurable fault-tolerant control systems[J]. Annual Reviews in Control, 2008, 32(2): 229-252. doi: 10.1016/j.arcontrol.2008.03.008
|
[3] |
JIANG J, YU X. Fault-tolerant control systems: A comparative study between active and passive approaches[J]. Annual Reviews in Control, 2012, 36(1): 60-72. doi: 10.1016/j.arcontrol.2012.03.005
|
[4] |
ABBASPOUR A, MOKHTARI S, SARGOLZAEI A, et al. A survey on active fault-tolerant control systems[J]. Electronics, 2020, 9(9): 1-24.
|
[5] |
ALWI H, EDWARDS C, STROOSMA O, et al. Fault tolerant sliding mode control design with piloted simulator evaluatio[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1186-1201. doi: 10.2514/1.35066
|
[6] |
ALWI H, EDWARDS C, STROOSMA O, et al. Sliding mode propulsion control tests on a motion flight simulator[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009: 1-23.
|
[7] |
张福桢, 金磊. 使用SGCMGs航天器滑模姿态容错控制[J]. 北京航空航天大学学报, 2017, 43(4): 806-813. doi: 10.13700/j.bh.1001-5965.2016.0270
ZHANG F Z, JIN L. Sliding-mode fault-tolerant attitude control for spacecraft using SGCMGs[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 806-813(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0270
|
[8] |
马艳如, 王青, 胡昌华, 等. 执行器故障下的运载火箭非奇异终端滑模容错控制[J]. 宇航学报, 2020, 41(12): 1553-1560. doi: 10.3873/j.issn.1000-1328.2020.12.009
MA Y R, WANG Q, HU C H, et al. Non-singular terminal sliding mode fault-tolerant control of launch vehicle with actuator fault[J]. Journal of Astronautics, 2020, 41(12): 1553-1560(in Chinese). doi: 10.3873/j.issn.1000-1328.2020.12.009
|
[9] |
MODIRI A, MOBAYEN S. Adaptive terminal sliding mode control scheme for synchronization of fractional-order uncertain chaotic systems[J]. ISA Transactions, 2020, 105: 33-50. doi: 10.1016/j.isatra.2020.05.039
|
[10] |
ZEGHLACHE S, KARA K, SAIGAA D. Fault tolerant control based on interval type-2 fuzzy sliding mode controller for coaxial trirotor aircraft[J]. ISA Transactions, 2015, 59: 215-231. doi: 10.1016/j.isatra.2015.09.006
|
[11] |
叶荣冠, 郑飞杰. 基于二型模糊大脑情感学习控制器的双足机器人容错控制研究[J]. 延边大学学报(自然科学版), 2021, 47(1): 56-63. doi: 10.3969/j.issn.1004-4353.2021.01.010
YE R G, ZHENG F J. A study of fault-tolerant control for a biped robot by using a type-2 fuzzy brain emotional learning controller[J]. Journal of Yanbian University(Natural Science), 2021, 47(1): 56-63(in Chinese). doi: 10.3969/j.issn.1004-4353.2021.01.010
|
[12] |
王蕊, 孔国利. 传感器故障的四旋翼无人机模糊自适应容错控制[J]. 数学的实践与认识, 2020, 50(24): 116-124. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS202024012.htm
WANG R, KONG G L. Fuzzy adaptive fault-tolerant control for four-rotor unmanned aerial vehicle under sensor fault[J]. Mathematics in Practice and Theory, 2020, 50(24): 116-124(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS202024012.htm
|
[13] |
孙浩, 郭迎清, 赵万里. 航空发动机传感器与执行机构信息重构算法[J]. 北京航空航天大学学报, 2020, 46(2): 331-339. doi: 10.13700/j.bh.1001-5965.2019.0240
SUN H, GUO Y Q, ZHAO W L. Information reconstruction algorithm of aero-engine sensors and actuators[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 331-339(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0240
|
[14] |
张振良, 刘君强, 黄亮, 等. 基于半监督迁移学习的轴承故障诊断方法[J]. 北京航空航天大学学报, 2019, 45(11): 2291-2300. doi: 10.13700/j.bh.1001-5965.2019.0082
ZHANG Z L, LIU J Q, HUANG L, et al. A bearing fault diagnosis method based on semi-supervised and transfer learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2291-2300(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0082
|
[15] |
王进花, 曹洁, 李伟, 等. 强噪声环境下自适应CRPF故障诊断方法[J]. 北京航空航天大学学报, 2018, 44(5): 923-930. doi: 10.13700/j.bh.1001-5965.2017.0353
WANG J H, CAO J, LI W, et al. An adaptive CRPF fault diagnosis method under strong noise condition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 923-930(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0353
|
[16] |
车畅畅, 王华伟, 倪晓梅, 等. 基于深度学习的航空发动机故障融合诊断[J]. 北京航空航天大学学报, 2018, 44(3): 621-628. doi: 10.13700/j.bh.1001-5965.2017.0197
CHE C C, WANG H W, NI X M, et al. Fault fusion diagnosis of aero-engine based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 621-628(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0197
|
[17] |
王良禹, 徐浩军, 李颖晖, 等. 结冰条件下的飞行控制律重构设计方法[J]. 北京航空航天大学学报, 2019, 45(3): 606-613. doi: 10.13700/j.bh.1001-5965.2018.0358
WANG L Y, XU H J, LI Y H, et al. Reconfigurable design method of flight control law under icing conditions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 606-613(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0358
|
[18] |
GRONDMAN F, LOOYE G, KUCHAR R O, et al. Design and flight testing of incremental nonlinear dynamic inversion-based control laws for a passenger aircraft[C]//AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2018: 1-25.
|
[19] |
SMEUR E J J, CHU Q P, CROON G C H E D. Adaptive incremental nonlinear dynamic inversion for attitude control of micro air vehicles[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(3): 450-461. doi: 10.2514/1.G001490
|
[20] |
SUN S, WANG X, CHU Q P, et al. Incremental nonlinear fault-tolerant control of a quadrotor with complete loss of two opposing rotors[J]. IEEE Transactions on Robotics, 2021, 37(1): 116-130. doi: 10.1109/TRO.2020.3010626
|
[21] |
WANG X R, KAMPEN E J, CHU Q P. Quadrotor fault-tolerant incremental nonsingular terminal sliding mode control[J]. Aerospace Science and Technology, 2019, 95: 1-14.
|
[22] |
WANG X, KAMPEN E J, CHU Q P, et al. Incremental sliding-mode fault-tolerant flight control[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(2): 244-258. doi: 10.2514/1.G003497
|
[23] |
李新国, 方群. 有翼导弹飞行动力学[M]. 西安: 西北工业大学出版社, 2004: 28-42.
LI X G, FANG Q. Flight dynamics of winged missile[M]. Xi'an: Northwestern Polytechnical University Press, 2004: 28-42(in Chinese).
|
[24] |
LU P, VAN KAMPEN E J, DE VISSER C, et al. Aircraft fault-tolerant trajectory control using incremental nonlinear dynamic inversion[J]. Control Engineering Practice, 2016, 57: 126-141. doi: 10.1016/j.conengprac.2016.09.010
|