Volume 48 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
FAN Tao, SUN Tao, LIU Huet al. Hot spot detection algorithm of photovoltaic module based on attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1304-1313. doi: 10.13700/j.bh.1001-5965.2021.0457(in Chinese)
Citation: FAN Tao, SUN Tao, LIU Huet al. Hot spot detection algorithm of photovoltaic module based on attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1304-1313. doi: 10.13700/j.bh.1001-5965.2021.0457(in Chinese)

Hot spot detection algorithm of photovoltaic module based on attention mechanism

doi: 10.13700/j.bh.1001-5965.2021.0457
Funds:

National Key R & D Program of China 2018YFB1500800

Technology Project of State Grid Corporation of China SGTJDK00DYJS2000148

More Information
  • Corresponding author: SUN Tao, E-mail: suntao@sgec.sgcc.com.cn
  • Received Date: 11 Aug 2021
  • Accepted Date: 03 Jan 2022
  • Publish Date: 25 Jan 2022
  • The hot spot phenomenon is one of the important reasons for the reduction of power generation capacity of photovoltaic panels, and the detection of hot spots is an essential task for operation and maintenance personnel. The scale of distributed photovoltaic power plants is generally small, the site is scattered, the environment is complex and diverse, and the operation and maintenance personnel need to invest a lot of human resources to detect hot spots using traditional hot spot detection methods. In this paper, we propose a new hot spot detection algorithm HSNet. Firstly, the influence of reflection is eliminated through image segmentation. Secondly, the feature information between channels is learned in combination with the channel attention mechanism to enhance the importance of the target area. The method of user-defined anchor points is used to improve the detection speed. Then, the focus loss activation function and the category prediction method based on the prior probability of objects are used to improve the problem of low classification accuracy caused by the imbalance of training target samples, Finally, the accurate target position is obtained by regression method. Experiments show that the target detection algorithm designed in this paper has significant advantages over other algorithms in terms of window regression accuracy and classification accuracy, and the mean accuracy and accuracy of the bounding box are improved by 3.18% and 2.42%, respectively.

     

  • loading
  • [1]
    云平, 张志祥, 刘恒. 基于I-V特性的多晶硅光伏组件故障及失效研究[J]. 太阳能, 2020(1): 61-69. doi: 10.3969/j.issn.1003-0417.2020.01.008

    YUN P, ZHANG Z X, LIU H. Study on failure mechanism of polycrystalline silicon PV module base on I-V characteristics[J]. Solar Energy, 2020(1): 61-69(in Chinese). doi: 10.3969/j.issn.1003-0417.2020.01.008
    [2]
    温浚铎, 郭珂, 王瀚笠, 等. 光伏阵列热斑故障在线检测方法研究[J]. 电子制作, 2019(15): 55-58. doi: 10.3969/j.issn.1006-5059.2019.15.021

    WEN J D, GUO K, WANG H L, et al. Photovoltaic array hot spot fault online detection method research[J]. Practical Electronics, 2019(15): 55-58(in Chinese). doi: 10.3969/j.issn.1006-5059.2019.15.021
    [3]
    陈斯, 戴新宇, 杨增汪, 等. 光伏旁路二极管在线监测系统[J]. 电测与仪表, 2012, 49(10): 96-100. doi: 10.3969/j.issn.1001-1390.2012.10.021

    CHEN S, DAI X Y, YANG Z W, et al. A bypass diode of photovoltaic on-line monitoring system[J]. Electrical Measurement & Instrumentation, 2012, 49(10): 96-100(in Chinese). doi: 10.3969/j.issn.1001-1390.2012.10.021
    [4]
    谢彭宇, 徐新. 基于多尺度联合学习的行人重识别[J]. 北京航空航天大学学报, 2021, 47(3): 613-622. doi: 10.13700/j.bh.1001-5965.2020.0445

    XIE P Y, XU X. Multi-scale joint learning for person re-identification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(3): 613-622(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0445
    [5]
    李广帅, 苏娟, 李义红. 基于改进Faster R-CNN的SAR图像飞机检测算法[J]. 北京航空航天大学学报, 2021, 47(1): 159-168. doi: 10.13700/j.bh.1001-5965.2020.0004

    LI G S, SU J, LI Y H. An aircraft detection algorithm in SAR image based on improved Faster R-CNN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 159-168(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0004
    [6]
    廖华年, 徐新. 基于注意力机制的跨分辨率行人重识别[J]. 北京航空航天大学学报, 2021, 47(3): 605-612. doi: 10.13700/j.bh.1001-5965.2020.0471

    LIAO H N, XU X. Cross-resolution person re-identification based on attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(3): 605-612(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0471
    [7]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017: 5998-6008.
    [8]
    LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2999-3007.
    [9]
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
    [10]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
    [11]
    BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Transactions on Neural Networks, 1994, 5(2): 157-166. doi: 10.1109/72.279181
    [12]
    DUVENAUD D, RIPPEL O, ADAMS R P, et al. Avoiding pathologies in very deep networks[EB/OL]. (2016-07-08)[2021-08-01]. https://arxiv.org/abs/1402.5836.
    [13]
    ORHAN A E, PITKOW X. Skip connections eliminate singularities[EB/OL]. (2018-03-04)[2021-08-01]. https://arxiv.org/abs/1701.09175.
    [14]
    HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
    [15]
    ZHANG J Z, HE T X, SRA S, et al. Why gradient clipping accelerates training: A theoretical justification for adaptivity[EB/OL]. (2020-02-10)[2021-08-01]. https://arxiv.org/abs/1905.11881.
    [16]
    GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 2011: 315-323.
    [17]
    MAAS A L. Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of the 30th International Conference on Machine Learning, 2013.
    [18]
    CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by exponential linear units (ELUs)[C]//Proceedings of the 4th International Conference on Learning Representations, 2015.
    [19]
    HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]//2015 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1026-1034.
    [20]
    IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning, 2015: 448-456.
    [21]
    HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [22]
    HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 2261-2269.
    [23]
    XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 5987-5995.
    [24]
    DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//2017 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 764-773.
    [25]
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 580-587.
    [26]
    GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1440-1448.
    [27]
    REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
    [28]
    HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views(618) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return