Volume 48 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
WU Yue, XIE Changchuan, YANG Chao, et al. Optimal design of motion parameters of flapping wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1324-1331. doi: 10.13700/j.bh.1001-5965.2021.0593(in Chinese)
Citation: WU Yue, XIE Changchuan, YANG Chao, et al. Optimal design of motion parameters of flapping wing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1324-1331. doi: 10.13700/j.bh.1001-5965.2021.0593(in Chinese)

Optimal design of motion parameters of flapping wing

doi: 10.13700/j.bh.1001-5965.2021.0593
More Information
  • Corresponding author: XIE Changchuan, E-mail: xiechangc@buaa.edu.cn
  • Received Date: 09 Oct 2021
  • Accepted Date: 14 Nov 2021
  • Publish Date: 22 Nov 2021
  • The flight of an ornithopter depends on the motions of the flapping wing. The optimal aerodynamic characteristics of a specific flapping wing will be obtained when using an optimized motion strategy. Furthermore, it provides a design basis for the transmission mechanism of a flapping wing aircraft. However, there is currently a lack of effective method for motion optimization in design stage to determine a set of optimal motion parameters for a given wing. In this paper, the unsteady vortex lattice method (UVLM) is applied to calculate the aerodynamic effect caused by the flapping motion. To verify accuracy of the aerodynamic calculation method, the result is correctly compared with existing experiment data. Then based on the DIRECT (divide rectangle) global optimization algorithm, the flapping kinematics parameters are iteratively optimized to maximize the propulsion efficiency. The results show that the optimization method can effectively solve the optimal parameters of flapping kinematics parameters and improve specific aerodynamic performance. The average thrust calculated by the optimization algorithm in this paper has a 104% numerical improvement compared to that of the baseline motion. Besides, it indicates that reducing the lift and thrust constraints are beneficial to the optimization to achieve a higher propulsion efficiency in the design process. The maximum propulsion efficiency without aerodynamic constraints in this paper is improved by 46.8% compared to that of the baseline motion.

     

  • loading
  • [1]
    KEENNON M, KLINGEBIEL K, WON H. Development of the nano hummingbird: A tailless flapping wing micro air vehicle: AIAA 2012-0588[R]. Reston: AIAA, 2012.
    [2]
    NICK T P S, TAI Y C, HO C M, et al Microbat: A palm-sized electrically powered ornithopter[C]//Proceedings of the NASA/JPL Workshop on Biomorphic Robotics, 2001: 14-17.
    [3]
    RAZAK N A, DIMITRIADIS G. Experimental study of wings undergoing active root flapping and pitching[J]. Journal of Fluids and Structures, 2014, 49: 687-704. doi: 10.1016/j.jfluidstructs.2014.06.009
    [4]
    SRIGRAROM S, CHAN W L. Flow field of flapping albatross-like wing and sound at low Reynolds number[J]. Journal of Unmanned System Technology, 2013, 1(2): 69-72.
    [5]
    STANFORD B K, BERAN P S. Analytical sensitivity analysis of an unsteady vortex-lattice method for flapping-wing optimization[J]. Journal of Aircraft, 2010, 47(2): 647-662. doi: 10.2514/1.46259
    [6]
    GHOMMEM M, COLLIER N, NIEMI A H, et al. On the shape optimization of flapping wings and their performance analysis[J]. Aerospace Science and Technology, 2014, 32(1): 274-292. doi: 10.1016/j.ast.2013.10.010
    [7]
    GHOMMEM M, HAJJ M R, MOOK D T, et al. Global optimization of actively morphing flapping wings[J]. Journal of Fluids and Structures, 2012, 33: 210-228. doi: 10.1016/j.jfluidstructs.2012.04.013
    [8]
    GABLONSKY J M. Modifications of the DIRECT algorithm[D]. Raleigh: North Carolina State University, 2001.
    [9]
    GHOMMEM M, COLLIER N, NIEMI A H, et al. Shape optimization and performance analysis of flapping wings[C]//Proceedings of the Eighth International Conference on Engineering Computational Technology, 2012.
    [10]
    ELDREDGE J D, JONES A R. Leading-edge vortices: Mechanics and modeling[J]. Annual Review of Fluid Mechanics, 2019, 51: 75-104. doi: 10.1146/annurev-fluid-010518-040334
    [11]
    SMITH M, WILKIN P, WILLIAMS M. The advantages of an unsteady panel method in modelling the aerodynamic forces on rigid flapping wings[J]. The Journal of Experimental Biology, 1996, 199(Pt 5): 1073-1083.
    [12]
    VEST M S, KATZ J. Unsteady aerodynamic model of flapping wings[J]. AIAA Journal, 1996, 34(7): 1435-1440. doi: 10.2514/3.13250
    [13]
    PERSSON P O, WILLIS D J, PERAIRE J. Numerical simulation of flapping wings using a panel method and a high-order Navier-Stokes solver[J]. International Journal for Numerical Methods in Engineering, 2012, 89(10): 1296-1316. doi: 10.1002/nme.3288
    [14]
    ROCCIA B A, PREIDIKMAN S, MASSA J C, et al. Modified unsteady vortex-lattice method to study flapping wings in hover flight[J]. AIAA Journal, 2013, 51(11): 2628-2642. doi: 10.2514/1.J052262
    [15]
    KATZ J, PLOTKIN A. Low-speed aerodynamics[M]. Cambridge: Cambridge University Press, 2001.
    [16]
    HEATHCOTE S, WANG Z, GURSUL I. Effect of spanwise flexibility on flapping wing propulsion[J]. Journal of Fluids and Structures, 2008, 24(2): 183-199. doi: 10.1016/j.jfluidstructs.2007.08.003
    [17]
    AONO H, CHIMAKURTHI S, CESNIK C, et al. Computational modeling of spanwise flexibility effects on flapping wing aerodynamics: AIAA 2009-1270[R]. Reston: AIAA, 2009.
    [18]
    WOLF T, KONRATH R. Avian wing geometry and kinematics of a free-flying barn owl in flapping flight[J]. Experiments in Fluids, 2015, 56(2): 1-18.
    [19]
    LANG X Y, SONG B F, YANG W Q, et al. Aerodynamic performance of owl-like airfoil undergoing bio-inspired flapping kinematics[J]. Chinese Journal of Aeronautics, 2021, 34(5): 239-252.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views(319) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return