Volume 49 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
HU Y,YUAN X T,LIU W,et al. GNSS-MR snow depth inversion method based on variational mode decomposition and moving average[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2890-2897 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0777
Citation: HU Y,YUAN X T,LIU W,et al. GNSS-MR snow depth inversion method based on variational mode decomposition and moving average[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2890-2897 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0777

GNSS-MR snow depth inversion method based on variational mode decomposition and moving average

doi: 10.13700/j.bh.1001-5965.2021.0777
Funds:  National Natural Science Foundation of China (52071199); Natural Science Foundation of Shanghai (19ZR1422800); Open Reseach Program of Shanghai Key Lab of Intelligent Information Processing (IIPL201904)
More Information
  • Corresponding author: E-mail:liu@sreil.com
  • Received Date: 23 Dec 2021
  • Accepted Date: 20 Mar 2022
  • Publish Date: 25 Mar 2022
  • To address the problem of poor separation of the signal-to-noise ratio (SNR) sequence trend items and the significant fluctuation of inversion result in the process of retrieving snow depth using global navigation satellite system multipath reflectometry (GNSS-MR), a snow depth inversion method based on variational mode decomposition (VMD) and moving average (MA) was proposed. The VMD algorithm can effectively separate the trend terms of the SNR sequence through adaptive high-pass filtering, and the MA algorithm can smooth the initial inversion results to reduce random fluctuations. The SNR observations of different frequency bands of GLONASS in the first five months of 2021 from the KIRU station in Sweden were selected to conduct the experiments to investigate the feasibility of the new method. The results show that the correlation coefficient between the inversion results based on the VMD algorithm and the in-situ snow depth of the climate station exceeds 0.95, and the root mean square error (RMSE) is at least about 5 cm, which is nearly 40% less than the traditional method. The inversion accuracy after smoothing using the MA method can be further improved. Considering the differences between GNSS stations and climate station, the GPS SNR inversion results are selected as another reference data source. Consistent experimental conclusions were obtained from different reference data sources, which verified the feasibility and effectiveness of the new method.

     

  • loading
  • [1]
    WALSH J E. Snow cover and atmospheric variability: Changes in the snow covering the earth’s surface affect both daily weather and long-term climate[J]. American Scientist, 1984, 72(1): 50-57.
    [2]
    胡媛, 袁鑫泰, 陈行杨, 等. 小波变换和改进Burg算法的GNSS-IR海面高度反演模型[J]. 大地测量与地球动力学, 2022, 42(1): 21-24.

    HU Y, YUAN X T, CHEN X Y, et al. GNSS-IR model of sea level inversion combining wavelet transform with improved Burg algorithm[J]. Journal of Geodesy and Geodynamics, 2022, 42(1): 21-24(in Chinese).
    [3]
    GEREMIA-NIEVINSKI F, HOBIGER T, HAAS R, et al. SNR-based GNSS reflectometry for coastal sea-level altimetry: Results from the first IAG inter-comparison campaign[J]. Journal of Geodesy, 2020, 94(8): 1-15.
    [4]
    LI Z, CHEN P, ZHENG N Q, et al. Accuracy analysis of GNSS-IR snow depth inversion algorithms[J]. Advances in Space Research, 2021, 67(4): 1317-1332. doi: 10.1016/j.asr.2020.11.021
    [5]
    MARTIN-NEIRA M. A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry[J]. ESA Journal, 1993, 17(4): 331-355.
    [6]
    BILICH A, LARSON K M, AXELRAD P. Observations of signal-to-noise ratios (SNR) at geodetic GPS site CASA: Implications for phase multipath[J]. Proceedings of the Centre for European Geodynamics and Seismology, 2004, 23: 77-83.
    [7]
    LARSON K M, GUTMANN E D, ZAVOROTNY V U, et al. Can we measure snow depth with GPS receivers?[J]. Geophysical Research Letters, 2009, 36(17): L17502-L17506. doi: 10.1029/2009GL039430
    [8]
    NIEVINSKI F G, LARSON K M. Forward modeling of GPS multipath for near-surface reflectometry and positioning applications[J]. GPS Solutions, 2014, 18(2): 309-322. doi: 10.1007/s10291-013-0331-y
    [9]
    LARSON K M, NIEVINSKI F G. GPS snow sensing: Results from the earthscope plate boundary observatory[J]. GPS Solutions, 2013, 17(1): 41-52. doi: 10.1007/s10291-012-0259-7
    [10]
    TABIBI S, NIEVINSKI F G, VAN DAM T, et al. Assessment of modernized GPS L5 SNR for ground-based multipath reflectometry applications[J]. Advances in Space Research, 2015, 55(4): 1104-1116. doi: 10.1016/j.asr.2014.11.019
    [11]
    JIN S, QIAN X, KUTOGLU H. Snow depth variations estimated from GPS-reflectometry: A case study in Alaska from L2P SNR data[J]. Remote Sensing, 2016, 8(1): 63-77. doi: 10.3390/rs8010063
    [12]
    TABIBI S, GEREMIA-NIEVINSKI F, VAN DAM T. Statistical comparison and combination of GPS, GLONASS, and multi-GNSS multipath reflectometry applied to snow depth retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3773-3785. doi: 10.1109/TGRS.2017.2679899
    [13]
    DYER S A, HE X. Least-squares fitting of data by polynomials[J]. IEEE Instrumentation & Measurement Magazine, 2001, 4(4): 46-51.
    [14]
    HU Y, YUAN X T, LIU W, et al. GNSS-IR model of sea level height estimation combining variational mode decomposition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 10405-10414. doi: 10.1109/JSTARS.2021.3118398
    [15]
    DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2013, 62(3): 531-544.
    [16]
    吴文轩, 王志坚, 张纪平, 等. 基于峭度的VMD分解中k值的确定方法研究[J]. 机械传动, 2018, 42(8): 153-157.

    WU W X, WANG Z J, ZHANG J P, et al. Research of the method of determining k value in VMD based on kurtosis[J]. Journal of Mechanical Transmission, 2018, 42(8): 153-157(in Chinese).
    [17]
    WILLIAMS S, NIEVINSKI F. Tropospheric delays in ground-based GNSS multipath reflectometry—Experimental evidence from coastal sites[J]. Journal of Geophysical Research:Solid Earth, 2017, 122(3): 2310-2327. doi: 10.1002/2016JB013612
    [18]
    ROUSSEL N, RAMILLIEN G, FRAPPART F, et al. Sea level monitoring and sea state estimate using a single geodetic receiver[J]. Remote Sensing of Environment, 2015, 171: 261-277. doi: 10.1016/j.rse.2015.10.011
    [19]
    LI F, LIU L, HUANG L, et al. GNSS snow depth monitoring using SNR observations[C]//Proceedings of the China Satellite Navigation Conference. Berlin: Springer, 2019: 211-219.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views(164) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return