Volume 49 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
ZHANG P H,CHEN H Y,ZHANG J,et al. Passive flow control for weapon bay at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2913-2920 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0790
Citation: ZHANG P H,CHEN H Y,ZHANG J,et al. Passive flow control for weapon bay at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2913-2920 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0790

Passive flow control for weapon bay at high Mach number

doi: 10.13700/j.bh.1001-5965.2021.0790
Funds:  National Numerical Windtunnel Project
More Information
  • Corresponding author: E-mail:fqzhou20@126.com
  • Received Date: 28 Dec 2021
  • Accepted Date: 20 Mar 2022
  • Publish Date: 10 May 2022
  • The noise generation mechanism of weapon bays at a high Mach number (Ma>2) is different from that of the subsonic, transonic, and supersonic weapon bay flow because of the stronger and more stable shear layer. This discrepancy may also lead to different flow control measures for cavity noise suppression. Using numerical simulations and wind tunnel tests, this study examines the effects of the cylindrical fuselage and Mach number on cavity flow characteristics, and of different passive flow control measures such as leading edge serrations, leading edge columns, leading edge transverse columns and leading edge baffles on the sound pressure level of a weapon bay at a high Mach number. This study provides a reference for the design and research of flow control measures for a high Mach number weapon bay. The results show that the cylindrical fuselage has an impact on the pressure distribution at the cavity bottom, that the unevenness of the pressure distribution increases, and that the pressure peak near the rear wall increases. The passive flow control measures, which are more effective for the subsonic, transonic and supersonic weapon bay flow, are not effective for the high Mach number cavity flow, and even increase the noise level in the weapon bay. Further research is needed to design more effective flow control measures.

     

  • loading
  • [1]
    LAWSON S J, BARAKOS G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Sciences, 2011, 47(3): 186-216. doi: 10.1016/j.paerosci.2010.11.002
    [2]
    MAULL D J, EAST L F. Three-dimensional flow in cavities[J]. Journal of Fluid Mechanics, 1963, 16(4): 620-632. doi: 10.1017/S0022112063001014
    [3]
    DIX R E, BAUER R C. Experimental and theoretical study of cavity acoustics: AEDC-TR-99-4[R]. Arnold AFB: Arnold Engineering Development Center, 2000.
    [4]
    ZHUANG N, ALVI F S, ALKISLAR M B, et al. Supersonic cavity flows and their control[J]. AIAA Journal, 2006, 44(9): 2118-2128. doi: 10.2514/1.14879
    [5]
    TAKEDA K, SHIEH C M. Cavity tones by computational aeroacoustics[J]. International Journal of Computational Fluid Dynamics, 2004, 18(6): 439-454. doi: 10.1080/10618560410001673461
    [6]
    CATTAFESTA L N, SONG Q, WILLIAMS D R, et al. Review of active control of flow-induced cavity resonance: AIAA-2003-3567[R]. Reston: AIAA, 2003.
    [7]
    SHAW L. Active control for cavity acoustics: AIAA-1998-2347[R]. Reston: AIAA, 1998.
    [8]
    KIM B H. Modeling pulsed blowing systems for active flow control [D]. Chicago: Illinois Institute of Technology, 2003.
    [9]
    SMITH B, WELTERLEN T, MAINES B, et al. Weapons bay acoustic suppression from rod spoilers: AIAA-2002-0662[R]. Reston: AIAA, 2002.
    [10]
    NORTON D. Investigation of B47 bomb bay buffet: D12675[R]. Chicago: Boeing Airplane Co. , 1952.
    [11]
    ROSSITER J. The effects of cavities on the buffetting of aircraft: AERO. 754[R]. Bedfordshire: Royal Aircraft Establishment, 1962.
    [12]
    ROSSITER J, KURN A. Wind tunnel measurements of the unsteady pressures in and behind a bomb bay (T.S.R.2): AERO. 2677[R]. Bedfordshire: Royal Aircraft Establishment, 1963.
    [13]
    SHAW L, CLARK R, TALMADGE D. F-111 generic weapons bay acoustic environment[J]. Journal of Aircraft, 1988, 25(2): 147-153. doi: 10.2514/3.45555
    [14]
    UKEILEY L S, PONTON M K, SEINER J M. Suppression of pressure loads in cavity flows[J]. AIAA Journal, 2004, 42(1): 70-79. doi: 10.2514/1.9032
    [15]
    SADDINGTON A J, THANGAMANI V, KNOWLES K. Comparison of passive flow control methods for a cavity in transonic flow[J]. Journal of Aircraft, 2016, 53(5): 1439-1447. doi: 10.2514/1.C033365
    [16]
    ROSS J, PETO J. The effect of cavity shaping, front spoilers and ceiling bleed on loads acting on stores, and on the unsteady environment within weapon bays: DERA/AS/HWA/CR97010/1[R]. Bedfordshire: Royal Aircraft Establishment, 1997.
    [17]
    BAYSAL O, YEN G W, FOULADI K. Navier-Stokes computations of cavity aero-acoustics with suppression devices[J]. Journal of Vibration and Acoustics, 1994, 116(1): 105-112. doi: 10.1115/1.2930385
    [18]
    LAWSON S J, BARAKOS G N. Assessment of passive flow control for transonic cavity flow using detached-eddy simulation[J]. Journal of Aircraft, 2009, 46(3): 1009-1029. doi: 10.2514/1.39894
    [19]
    ASHWORTH R. DES of a cavity with spoiler[C]//Proceedings of the 2nd Symposium on Hybrid RANS-LES Methods. Berlin: Springer, 2008: 162-171.
    [20]
    TIPTON A G, SHAW L L. Weapon bay cavity noise environments data correlation and prediction for the B-1 aircraft: AFW AL-TR-0-3060[R]. Los Angeles: Rockwell International Corporation, 1980.
    [21]
    CENKO A, SESLANDES R, DILLENIUS M, et al. Unsteady weapon bay aerodynamics—Urban legend or flight clearance nightmare[C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
    [22]
    吴继飞, 徐来武, 范召林, 等. 开式空腔气动声学特性及其流动控制方法[J]. 航空学报, 2015, 36(7): 2155-2165.

    WU J F, XU L W, FAN Z L, et al. Aeroacoustic characteristics and flow control method of open cavity flow[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2155-2165(in Chinese).
    [23]
    杨党国. 内埋武器舱气动声学特性与噪声抑制研究[D]. 绵阳: 中国空气动力研究与发展中心研究生部, 2010.

    YANG D G. Studies on aeroacoustic characteristics and noise suppressions for internal weapon bays[D]. Mianyang: Graduate Faculty of China Aerodynamics Research and Development Center, 2010(in Chinese).
    [24]
    LUO B H, HU Z W, DAI C H. Experimental study of high subsonic cavity flow oscillation and its suppression by acoustic excitation[J]. Chinese Journal of Aeronautics, 1998, 11(3): 161-164.
    [25]
    谢露, 张彦军, 侯银珠, 等. 亚声速武器舱空腔流动压力特性及其控制方法[J]. 航空学报, 2020, 41(11): 123961.

    XIE L, ZHANG Y J, HOU Y Z, et al. Cavity flow pressure characteristics and flow control methods of subsonic weapon bay[J]. Acta Aerodynamic et Astronautica Sinica, 2020, 41(11): 123961(in Chinese).
    [26]
    冯强, 崔晓春. 飞翼布局飞机武器舱综合流动控制技术[J]. 航空学报, 2012, 33(5): 781-787.

    FENG Q, CUI X C. Study on integrated flow control for weapons bay of flying wing configuration aircraft[J]. Acta Aerodynamic et Astronautica Sinica, 2012, 33(5): 781-787(in Chinese).
    [27]
    周方奇, 杨党国, 王显圣, 等. 前缘直板扰流对高速空腔的降噪效果分析[J]. 航空学报, 2018, 39(4): 21812. doi: 10.7527/S1000-6893.2017.21812

    ZHOU F Q, YANG D G, WANG X S, et al. The effect of leading edge plate on high speed cavity noise controlling[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4): 21812(in Chinese). doi: 10.7527/S1000-6893.2017.21812
    [28]
    刘瑜, 童明波, HU Z W, 等. 基于DDES 算法的有扰流片腔体气动噪声分析[J]. 空气动力学学报, 2015, 33(5): 643-648. doi: 10.7638/kqdlxxb-2014.0025

    LIU Y, TONG M B, HU Z W, et al. DDES of aeroacoustic over an open cavity with and without a spoiler[J]. Acta Aerodynamica Sinica, 2015, 33(5): 643-648(in Chinese). doi: 10.7638/kqdlxxb-2014.0025
    [29]
    TRAVIN A K, SHUR M L, SPALART P R, et al. Improvement of delayed detached-eddy simulation for LES with wall modelling[C]//Proceedings of the European Conference on Computational Fluid Dynamics. Lisbon: ECCOMAS, 2006: 32-410.
    [30]
    国防科学技术工业委员会. 高速风洞和低速风洞流场品质规范: GJB 1179—91[S]. 北京: 国防科学技术工业委员会, 1991.

    Commission of Science, Technology and Industry For National Defense. Specification for flow quality of high and low speed wind tunnels: GJB 1179—91[S]. Beijing: Commission of Science, Technology and Industry for National Defense, 1991(in Chinese).
    [31]
    BAUER R C, DIX R E. Engineering model of unsteady flow in a cavity: AEDC-TR-91-17[R]. Arnold AFB: Arnold Engineering Development Center, 1991.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views(324) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return