Volume 49 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
LI Y C,LI Q H,ZHANG X S,et al. N-dot control method of turbofan engine based on active switching logic[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3156-3166 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0022
Citation: LI Y C,LI Q H,ZHANG X S,et al. N-dot control method of turbofan engine based on active switching logic[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3156-3166 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0022

N-dot control method of turbofan engine based on active switching logic

doi: 10.13700/j.bh.1001-5965.2022.0022
Funds:  National Science and Technology Major Project (2017-V-0004-0054,J2019-I-0010-0010)
More Information
  • Corresponding author: E-mail:lqh203@nuaa.edu.cn
  • Received Date: 17 Jan 2022
  • Accepted Date: 06 Jun 2022
  • Publish Date: 06 Jul 2022
  • In order to enhance the acceleration ability of turbofan engines, the traditional N-dot control structure is improved, and an active switching control strategy based on tracking error is proposed. When the tracking error is significant, the N-dot control loop is engaged; otherwise, the steady-state control loop is engaged. At the same time, a contour-based N-dot control scheduling method is proposed. The acceleration process is optimized by a differential evolution algorithm with the objective of minimizing the error with the maximum rotor speed. The maximum high-pressure rotor acceleration at different altitudes is used as the N-dot control schedule, and the acceleration controller is designed based on the compact form dynamic linearization based model free adaptive control (CFDL-MFAC) method. The acceleration time of the active switching (MFAC) N-dot control is approximately 0.7 seconds shorter at the design point and approximately 1.2 seconds shorter at the off-design point for a medium-thrust military turbofan engine when compared to the PI control N-dot under the conventional Min-Max selection structure.

     

  • loading
  • [1]
    樊思齐. 航空发动机控制[M]. 西安: 西北工业大学出版社, 2008: 235-271.

    FAN S Q. Aeroengine control[M]. Xi’an: Northwestern Polytechnical University Press, 2008: 235-271(in Chinese).
    [2]
    SPANG H A, BROWN H. Control of jet engines[J]. Control Engineering Practice, 1999, 7(9): 1043-1059. doi: 10.1016/S0967-0661(99)00078-7
    [3]
    CSANK J, MAY R, LITT J, et al. Control design for a generic commercial aircraft engine: AIAA-2010-6629[R]. Reston: AIAA, 2010.
    [4]
    CSANK J T, ZINNECKER A M. Tool for turbine engine closedloop transient analysis (TTECTrA) users’guide: NASA-TM-2014-216663[R]. Washington, D.C.: NASA, 2014: 1-31.
    [5]
    王曦, 党伟, 李志鹏, 等. 1种N-dot过渡态PI控制律的设计方法[J]. 航空发动机, 2015, 41(6): 1-5.

    WANG X, DANG W, LI Z P, et al. A design method of N-dot transient state PI control laws[J]. Aeroengine, 2015, 41(6): 1-5(in Chinese).
    [6]
    黄浏, 殷锴, 杨文博, 等. 基于N-dot的涡扇发动机加速控制器设计[J]. 航空发动机, 2017, 43(5): 26-30.

    HUANG L, YIN K, YANG W B, et al. Design of acceleration controller to a turbofan engine using N-dot method[J]. Aeroengine, 2017, 43(5): 26-30(in Chinese).
    [7]
    杨帆, 彭凯, 王伟, 等. 辅助动力装置N-Dot加速控制研究及试车验证[J]. 燃气涡轮试验与研究, 2020, 33(3): 13-16.

    YANG F, PENG K, WANG W, et al. Research and testing verification of N-Dot acceleration control for an auxiliary power unit[J]. Gas Turbine Experiment and Research, 2020, 33(3): 13-16(in Chinese).
    [8]
    姚太克, 闻伟, 杨刚, 等. 一种涡扇发动机加减速转速变化率闭环控制技术[J]. 推进技术, 2020, 41(6): 1404-1410.

    YAO T K, WEN W, YANG G, et al. Control law design for N-dot closed control loop for acceleration and deceleration process in turbofan engine[J]. Journal of Propulsion Technology, 2020, 41(6): 1404-1410(in Chinese).
    [9]
    刘子赫, 郑前钢, 刘明磊, 等. 涡扇发动机全包线加速控制计划改进方法研究[J]. 推进技术, 2022, 43(1): 346-353.

    LIU Z H, ZHENG Q G, LIU M L, et al. Improvement method of turbofan engine full-envelope acceleration control schedule[J]. Journal of Propulsion Technology, 2022, 43(1): 346-353(in Chinese).
    [10]
    HOU Z S, JIN S T. Model free adaptive control: theory and applications[M]. Boca Raton: CRC Press, 2014: 15-16.
    [11]
    王文佳, 侯忠生. 基于无模型自适应控制的自动泊车方案[J]. 控制与决策, 2022, 37(8): 2056-2066.

    WANG W J, HOU Z S. Model-free adaptive control based automatic parking scheme[J]. Control and Decision, 2022, 37(8): 2056-2066(in Chinese).
    [12]
    曹荣敏, 郑鑫鑫, 侯忠生. 基于改进多入多出无模型自适应控制的二维直线电机迭代学习控制[J]. 电工技术学报, 2021, 36(19): 4025-4034.

    CAO R M, ZHENG X X, HOU Z S. An iterative learning control based on improved multiple input and multiple output model free adaptive control for two-dimensional linear motor[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4025-4034(in Chinese).
    [13]
    邓望权, 田震, 王子楠, 等. 基于PI与无模型自适应控制结合的燃气轮机转速控制方法[J]. 推进技术, 2022, 43(7): 404-412.

    DENG W Q, TIAN Z, WANG Z N, et al. Speed control method of gas turbine based on combination of PI and model free adaptive control[J]. Journal of Propulsion Technology, 2022, 43(7): 404-412(in Chinese).
    [14]
    管庭筠, 李秋红. 基于改进无模型自适应算法的涡扇发动机限制保护控制方法[J]. 推进技术, 2020, 41(10): 2348-2357.

    GUAN T J, LI Q H. Control method for limit protection of turbofan engine based on improved model-free adaptive algorithm[J]. Journal of Propulsion Technology, 2020, 41(10): 2348-2357(in Chinese).
    [15]
    LIU S D, HOU Z S, ZHANG X, et al. Model-free adaptive control method for a class of unknown MIMO systems with measurement noise and application to quadrotor aircraft[J]. IET Control Theory & Applications, 2020, 14(15): 2084-2096.
    [16]
    陆军, 郭迎清, 王磊. 航空发动机过渡态最优控制规律设计的新方法[J]. 航空动力学报, 2012, 27(8): 1914-1920.

    LU J, GUO Y Q, WANG L. A new method for designing optimal control law of aeroengine in transient states[J]. Journal of Aerospace Power, 2012, 27(8): 1914-1920(in Chinese).
    [17]
    ZHENG Q G, ZHANG H B. A global optimization control for turbo-fan engine acceleration schedule design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 308-316. doi: 10.1177/0954410016683412
    [18]
    LIU Y F, JAFARI S, NIKOLAIDIS T. Advanced optimization of gas turbine aero-engine transient performance using linkage-learning genetic algorithm: Part I, Building blocks detection and optimization in runway[J]. Chinese Journal of Aeronautics, 2021, 34(4): 526-539. doi: 10.1016/j.cja.2020.07.034
    [19]
    时培燕, 缑林峰, 郭江维, 等. 基于GA-SQP的航空发动机加速寻优控制[J]. 计算机与现代化, 2014(1): 62-66.

    SHI P Y, GOU L F, GUO J W, et al. Optimal control of aeroengine acceleration process based on GA-SQP[J]. Computer and Modernization, 2014(1): 62-66(in Chinese).
    [20]
    YE Y, WANG Z, ZHANG X. Cascade ensemble-RBF-based optimization algorithm for aero-engine transient control schedule design optimization[J]. Aerospace Science and Technology, 2021, 115: 106779. doi: 10.1016/j.ast.2021.106779
    [21]
    JIA L Y, CHEN Y C, CHENG R H, et al. Designing method of acceleration and deceleration control schedule for variable cycle engine[J]. Chinese Journal of Aeronautics, 2021, 34(5): 27-38. doi: 10.1016/j.cja.2020.08.037
    [22]
    刘波, 王凌, 金以慧. 差分进化算法研究进展[J]. 控制与决策, 2007, 22(7): 721-729. doi: 10.3321/j.issn:1001-0920.2007.07.001

    LIU B, WANG L, JIN Y H. Advances in differential evolution[J]. Control and Decision, 2007, 22(7): 721-729(in Chinese). doi: 10.3321/j.issn:1001-0920.2007.07.001
    [23]
    李志鹏, 王曦, 王华威, 等. 基于差分进化算法的涡喷发动机增推研究[J]. 推进技术, 2015, 36(11): 1714-1720.

    LI Z P, WANG X, WANG H W, et al. Research on differential evolution algorithm-based thrust augmentation of turbojet[J]. Journal of Propulsion Technology, 2015, 36(11): 1714-1720(in Chinese).
    [24]
    焦洋, 李秋红, 朱正琛, 等. 基于 ADE-ELM 的涡轴发动机建模方法[J]. 航空动力学报, 2016, 31(4): 965-973.

    JIAO Y, LI Q H, ZHU Z C, et al. Turbo-shaft engine modeling method based on ADE-ELM[J]. Journal of Aerospace Power, 2016, 31(4): 965-973(in Chinese).
    [25]
    HOU Z S, ZHU Y M. Controller-dynamic-linearization-based model free adaptive control for discrete-time nonlinear systems[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2301-2309. doi: 10.1109/TII.2013.2257806
    [26]
    HOU Z S, XIONG S S. On model-free adaptive control and its stability analysis[J]. IEEE Transactions on Automatic Control, 2019, 64(11): 4555-4569. doi: 10.1109/TAC.2019.2894586
    [27]
    赵颖. 切换系统的镇定控制设计: 无扰切换控制方法[D]. 沈阳: 东北大学, 2019.

    ZHAO Y. Study on stabilization control design for switched systems: A bumpless transfer control method[D]. Shenyang: Northeastern University, 2019(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(146) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return