Volume 49 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
CHEN Z L,LU Z X,XIAO T H,et al. Effect of local oscillation on aerodynamics of thin airfoil in Mars environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2938-2950 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0032
Citation: CHEN Z L,LU Z X,XIAO T H,et al. Effect of local oscillation on aerodynamics of thin airfoil in Mars environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2938-2950 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0032

Effect of local oscillation on aerodynamics of thin airfoil in Mars environment

doi: 10.13700/j.bh.1001-5965.2022.0032
Funds:  National Natural Science Foundation of China (11672133,12002161);Priority Academic Program Development of Jiangsu Higher Education Institutions
More Information
  • Corresponding author: E-mail:xthang@nuaa.edu.cn
  • Received Date: 19 Jan 2022
  • Accepted Date: 11 Mar 2022
  • Publish Date: 18 Mar 2022
  • The thin atmosphere of Mars constrains the MAV in the subcritical Reynolds number regime, where the laminar boundary layer separation extremely adversely affects the aerodynamic performance of UAVs. Meanwhile, the low sound velocity of the Martian atmosphere results in a higher Mach number of UAVs, which enhances the compression effect and may generate shock waves. The numerical approach based on the dynamic mesh is used to model the unsteady flow field and examine the flow control effect of the airfoil local oscillation with the atmospheric characteristics of Mars. The NACA5605 thin airfoil is selected, the Reynolds number is 1.5×104, and the Mach number is 0.43 and 0.63. The airfoil local oscillation can greatly reduce the size of the separation zone, increasing lift and decreasing drag, according to the results of the time-averaged flow field and time-averaged aerodynamic coefficient. The unsteady flow field shows that the flow control mechanism is that the vortex motion generated by oscillation restrains the laminar flow separation near the trailing edge of the airfoil. The flow control efficiency under different amplitudes, frequencies, and oscillation locations is studied. Under the optimal parameters, the lift-to-drag ratio is improved up to 24.7% at 0.43 Mach number while 52% at 0.63 Mach number.

     

  • loading
  • [1]
    赵宇鴳, 周迪圣, 李雄耀, 等. 国际火星探测科学目标演变与未来展望[J]. 科学通报, 2020, 65(23): 2439-2453. doi: 10.1360/TB-2019-0638

    ZHAO Y A, ZHOU D S, LI X Y, et al. The evolution of scientific goals for Mars exploration and future prospects[J]. Chinese Science Bulletin, 2020, 65(23): 2439-2453(in Chinese). doi: 10.1360/TB-2019-0638
    [2]
    赵鹏越, 全齐全, 邓宗全, 等. 旋翼式火星无人机技术发展综述[J]. 宇航学报, 2018, 39(2): 121-130. doi: 10.3873/j.issn.1000-1328.2018.02.002

    ZHAO P Y, QUAN Q Q, DENG Z Q, et al. Overview of research on rotary-wing Mars unmanned aerial vehicles[J]. Journal of Astronautics, 2018, 39(2): 121-130(in Chinese). doi: 10.3873/j.issn.1000-1328.2018.02.002
    [3]
    KONING W J F, JOHNSON W, GRIP H F. Improved Mars helicopter aerodynamic rotor model for comprehensive analyses[J]. AIAA Journal, 2019, 57(9): 3969-3979. doi: 10.2514/1.J058045
    [4]
    BALARAM J, DAUBAR I J, BAPST J, et al. Helicopters on Mars: Compelling science of extreme terrains enabled by an aerial platform[C]//9th International Conference on Mars, 2019.
    [5]
    MCMASTERS J, HENDERSON M L. Low-speed single-element airfoil synthesis[J]. Technical Soaring, 1979, 6: 1-21.
    [6]
    WANG S, ZHOU Y, ALAM M M, et al. Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers[J]. Physics of Fluids, 2014, 26(11): 115107. doi: 10.1063/1.4901969
    [7]
    GAD-EL-HAK M. Micro-air-vehicles: Can they be controlled better?[J]. Journal of Aircraft, 2001, 38(3): 419-429. doi: 10.2514/2.2807
    [8]
    ANYOJI M, NUMATA D, NAGAI H, et al. Effects of Mach number and specific heat ratio on low-Reynolds-number airfoil flows[J]. AIAA Journal, 2015, 53(6): 1640-1654. doi: 10.2514/1.J053468
    [9]
    KONING W J F, JOHNSON W, ALLAN B G. Generation of Mars helicopter rotor model for comprehensive analyses[C]//Proceedings of the AHS International Technical Meeting on Aeromechanics Design for Transformative Vertical Flight, 2018.
    [10]
    张旺龙, 谭俊杰, 陈志华, 等. 抽吸控制对低雷诺数下翼型分离流动的影响[J]. 航空学报, 2014, 35(1): 141-150.

    ZHANG W L, TAN J J, CHEN Z H, et al. Effect of suction control on separation flow around an airfoil at low Reynolds numbers[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 141-150(in Chinese).
    [11]
    左伟, 顾蕴松, 王奇特, 等. 低雷诺数下机翼气动特性研究及控制[J]. 航空学报, 2016, 37(4): 1139-1147.

    ZUO W, GU Y S, WANG Q T, et al. Aerodynamic characteristics and flow control on a rectangular wing at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1139-1147(in Chinese).
    [12]
    孟宣市, 杨泽人, 陈琦, 等. 低雷诺数下层流分离的等离子体控制[J]. 航空学报, 2016, 37(7): 2112-2122.

    MENG X S, YANG Z R, CHEN Q, et al. Laminar separation control at low Reynolds numbers using plasma actuation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7): 2112-2122(in Chinese).
    [13]
    SINHA S K. Flow separation control with microflexural wall vibrations[J]. Journal of Aircraft, 2001, 38(3): 496-503. doi: 10.2514/2.2789
    [14]
    SINHA S. Aircraft drag reduction with flexible composite surface boundary layer control[C]// Proceedings of the 2nd AIAA Flow Control Conference. Reston: AIAA, 2004.
    [15]
    ARTHUR G G, MCKEON B J, DEARING S S, et al. Manufacture of micro-sensors and actuators for flow control[J]. Microelectronic Engineering, 2006, 83(4-9): 1205-1208. doi: 10.1016/j.mee.2006.01.171
    [16]
    WEDDLE A, ZAREMSKI S, ZHANG L, et al. Control of laminar separation bubble using electro-active polymers[C]// Proceedings of the 6th AIAA Flow Control Conference. Reston: AIAA, 2012.
    [17]
    DEMAURO E P, DELL’ORSO H, ZAREMSKI S, et al. Control of laminar separation bubble on NACA 0009 airfoil using electroactive polymers[J]. AIAA Journal, 2015, 53(8): 2270-2279. doi: 10.2514/1.J053670
    [18]
    卢丛玲, 祁浩天, 徐国华. 共轴双旋翼非定常流场干扰特性[J]. 航空动力学报, 2019, 34(7): 1459-1470.

    LU C L, QI H T, XU G H. Unsteady flow field interaction of coaxial rotor[J]. Journal of Aerospace Power, 2019, 34(7): 1459-1470(in Chinese).
    [19]
    KANG W, LEI P F, ZHANG J Z, et al. Effects of local oscillation of airfoil surface on lift enhancement at low Reynolds number[J]. Journal of Fluids and Structures, 2015, 57: 49-65. doi: 10.1016/j.jfluidstructs.2015.05.009
    [20]
    DI G Q, WU Z C, HUANG D G. The research on active flow control method with vibration diaphragm on a NACA0012 airfoil at different stalled angles of attack[J]. Aerospace Science and Technology, 2017, 69: 76-86. doi: 10.1016/j.ast.2017.06.020
    [21]
    LOU B, YE S J, WANG G F, et al. Numerical and experimental research of flow control on an NACA 0012 airfoil by local vibration[J]. Applied Mathematics and Mechanics, 2019, 40(1): 1-12. doi: 10.1007/s10483-019-2404-8
    [22]
    刘强, 刘周, 白鹏, 等. 低雷诺数翼型蒙皮主动振动气动特性及流场结构数值研究[J]. 力学学报, 2016, 48(2): 269-277.

    LIU Q, LIU Z, BAI P, et al. Numerical study about aerodynamic characteristics and flow field structures for a skin of airfoil with active oscillation at low Reynolds number[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 269-277(in Chinese).
    [23]
    李冠雄, 马东立, 杨穆清, 等. 低雷诺数翼型局部振动非定常气动特性[J]. 航空学报, 2018, 39(1): 121427.

    LI G X, MA D L, YANG M Q, et al. Unsteady aerodynamic characteristics of airfoil with local oscillation at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 121427(in Chinese).
    [24]
    杨荣菲, 徐堃, 仲冬冬, 等. 振动凸包控制低雷诺数高负荷低压涡轮叶栅层流分离的数值研究[J]. 推进技术, 2019, 40(2): 267-275. doi: 10.13675/j.cnki.tjjs.170805

    YANG R F, XU K, ZHONG D D, et al. Numerical study on laminar separation control using dynamic hump in high-loaded low pressure turbine cascade at low-Reynolds number[J]. Journal of Propulsion Technology, 2019, 40(2): 267-275(in Chinese). doi: 10.13675/j.cnki.tjjs.170805
    [25]
    LEI J M, ZHANG J W, NIU J P. Effect of active oscillation of local surface on the performance of low Reynolds number airfoil[J]. Aerospace Science and Technology, 2020, 99: 105774. doi: 10.1016/j.ast.2020.105774
    [26]
    MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables—Part I: Model formulation[J]. Journal of Turbomachinery, 2006, 128(3): 413. doi: 10.1115/1.2184352
    [27]
    SUWA T, NOSE K, NUMATA D, et al. Compressibility effects on airfoil aerodynamics at low Reynolds number[C]// Proceedings of the 30th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2012.
    [28]
    吴锤结, 解妍琼, 吴介之. "流体滚动轴承"效应及其在流动控制中的应用[C]//全国第九届分离流、旋涡和流动控制会议. 北京: 中国空气动力学会, 2002: 281-290

    WU C J, XIE Y Q, WU J Z. Effect and application of flow control of fluid ball bearing[C]//The Ninth National Conference on Flow Separation, Vortex and Flow Control Conference. Beijing: CARS, 2002: 281-290 (in Chinese).
    [29]
    吴锤结, 王亮. 运动物面流动控制[J]. 固体力学学报, 2005, 26: 10-21.

    WU C J, WANG L. Control flow of moving interface[J]. Acta Mechanica Solida Sinica, 2005, 26: 10-21(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)  / Tables(9)

    Article Metrics

    Article views(128) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return