Volume 49 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
LIU S S,LUO L,HAN Q H,et al. Study on lateral-directional stability of a practical high lift-to-drag ratio hypersonic vehicle with momentum lift augmentation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3010-3021 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0035
Citation: LIU S S,LUO L,HAN Q H,et al. Study on lateral-directional stability of a practical high lift-to-drag ratio hypersonic vehicle with momentum lift augmentation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3010-3021 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0035

Study on lateral-directional stability of a practical high lift-to-drag ratio hypersonic vehicle with momentum lift augmentation

doi: 10.13700/j.bh.1001-5965.2022.0035
Funds:  National Numerical Windtunnel Project
More Information
  • Corresponding author: E-mail:hongyinjia@foxmail.com
  • Received Date: 19 Jan 2022
  • Accepted Date: 25 Feb 2022
  • Publish Date: 13 Apr 2022
  • A new aerodynamic configuration concept for a hypersonic vehicle with a high lift-to-drag ratio is proposed to satisfy the constantly increasing practicability multi-constraints of high volumetric efficiency, control and stability, and acceptable thermal protection. The design principles of this practical configuration is inspired by the wave-rider design idea and momentum principle which incorporates inverted dihedral with an aft-sweeping wing, caret upper surface, and con-cavity lower surface are elaborated. A trailing edge flap and a body-fitted expansion rudder were used in place of the standard control surface's leading edge to prevent excessive heat flow during the prolonged hypersonic flight. The aerodynamic characteristics of this new configuration were obtained and discussed by applying numerical simulation with Navier-Stokes equations and wind tunnel test. The results show that the delta wing with a caret upper surface and concavity bottom surface can generate highly compressed air beneath the vehicle and reduce the loss of lifting pressure. The maximum lift-to-drag ratio achieves nearly 4.48 at Ma=10 and 40Km altitude and maintains well at a wide range of angles of attack. At the same time, the effects and feasibility of three different optimization schemes are discussed based on the numerical simulation method, aiming at the common lateral and directional stability problem of the proposed configuration, and the wind tunnel test is used to verify the lateral and directional stability control effect of the scheme with two V winglets.The results show that the control scheme with two V winglets is the better scheme to realize the lateral and directional stability.

     

  • loading
  • [1]
    MOSES P L, RAUSCH V L, NGUYEN L T, et al. NASA hypersonic flight demonstrators—overview, status, and future plans[J]. Acta Astronautica, 2004, 55(3): 619-630.
    [2]
    MANSOUR N, PITTMAN J, OLSON L. Fundamental aeronautics hypersonics project: Overview[C]//Proceedings of the 39th AIAA Thermophysics Conference. Reston: AIAA, 2007.
    [3]
    WHITMORE S, DUNBAR B. Orbital space plane: Past, present, and future[C]//Proceedings of the AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Reston: AIAA, 2003.
    [4]
    WEILAND C. Aerodynamic data of space vehicles[M]. Berlin: Springer, 2014.
    [5]
    唐伟, 冯毅, 杨肖峰, 等. 非惯性弹道飞行器气动布局设计实践[J]. 气体物理, 2017, 2(1): 1-12.

    TANG W, FENG Y, YANG X F, et al. Practices of aerodynamic configuration design for non-ballistic trajectory vehicles[J]. Physics of Gases, 2017, 2(1): 1-12(in Chinese).
    [6]
    ANDERSON J, LEWIS M. Hypersonic waveriders—where do we stand? [C]//Proceedings of the 31st Aerospace Sciences Meeting. Reston: AIAA, 1993.
    [7]
    高清, 赵俊波, 李潜. 类HTV-2横侧向稳定性研究[J]. 宇航学报, 2014, 35(6): 657-662.

    GAO Q, ZHAO J B, LI Q. Study on lateral-directional stability of HTV-2 like configuration[J]. Journal of Astronautics, 2014, 35(6): 657-662(in Chinese).
    [8]
    高清, 李潜. 美国高超声速飞行器横侧向稳定性研究[J]. 飞航导弹, 2012(12): 14-18.

    GAO Q, LI Q. Study on lateral stability of American hypersonic vehicle[J]. Aerodynamic Missile Journal, 2012(12): 14-18(in Chinese).
    [9]
    鲍文, 姚照辉. 综合离心力/气动力的升力体高超声速飞行器纵向运动建模研究[J]. 宇航学报, 2009, 30(1): 128-133.

    BAO W, YAO Z H. Study on longitudinal modeling for integrated centrifugal/aero force lifting-body hypersonic vehicles[J]. Journal of Astronautics, 2009, 30(1): 128-133(in Chinese).
    [10]
    马辉, 袁建平, 方群. 吸气式高超声速飞行器动力学特性分析[J]. 宇航学报, 2007, 28(5): 1100-1104.

    MA H, YUAN J P, FANG Q. Dynamics analysis of air-breathing hypersonic vehicle[J]. Journal of Astronautics, 2007, 28(5): 1100-1104(in Chinese).
    [11]
    闵昌万. 高超声速飞行器横侧向气动布局准则研究[J]. 宇航总体技术, 2018, 2(3): 1-10.

    MIN C W. The aerodynamic configuration criteria for the lateral-directional stability of hypersonic vehicle[J]. Astronautical Systems Engineering Technology, 2018, 2(3): 1-10(in Chinese).
    [12]
    LUNAN D A. Waverider, a revised chronology[C]//Proceedings of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2015.
    [13]
    NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. The Journal of the Royal Aeronautical Society, 1959, 63(585): 521-528. doi: 10.1017/S0368393100071662
    [14]
    JONES J G, MOORE K C, PIKE J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields[J]. Ingenieur-Archiv, 1968, 37(1): 56-72. doi: 10.1007/BF00532683
    [15]
    CORDA S, ANDERSON J. Viscous optimized hypersonic waveriders designed from axisymmetric flow fields[C]//Proceedings of the 26th Aerospace Sciences Meeting. Reston: AIAA, 1988.
    [16]
    LYU Y C, JIANG C W, GAO Z X, et al. Passive waverider method and its validation[C]//Proceedings of the AIAA SPACE 2014 Conference and Exposition. Reston: AIAA, 2014.
    [17]
    刘荣健, 白鹏. 基于超声速有益干扰原理的气动构型概念综述[J]. 航空学报, 2020, 41(9): 023784.

    LIU R J, BAI P. Concept of aerodynamic configuration based on supersonic favorable interference principle: review[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 023784(in Chinese).
    [18]
    EGGERS A J, SYVERTSON C A. Aircraft configurations developing high lift-drag ratios at high supersonic speeds: NACA-RM-A55L05 [R]. Washing, D. C. : NASA, 1956.
    [19]
    WILLIAM H, ALBAN III, KARL H, et al. Aerodynamic re-entry vehicle control with active and passive yaw flaps: USA, 7611095[P]. 2009-11-03.
    [20]
    唐伟, 李为吉, 高晓成, 等. 削面/配平翼飞行器的气动计算及分析[J]. 西北工业大学学报, 2004, 22(5): 541-544. doi: 10.3969/j.issn.1000-2758.2004.05.001

    TANG W, LI W J, GAO X C, et al. Aerodynamic prediction and analysis for a reentry vehicle with slice-ailerons[J]. Journal of Northwestern Polytechnical University, 2004, 22(5): 541-544(in Chinese). doi: 10.3969/j.issn.1000-2758.2004.05.001
    [21]
    桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7): 020844.

    GUI Y W, LIU L, DAI G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 020844(in Chinese).
    [22]
    刘磊, 代光月, 曾磊, 等. 气动力/热与结构多场耦合试验模型方案初步设计[J]. 航空学报, 2017, 38(11): 221165.

    LIU L, DAI G Y, ZENG L, et al. Preliminary test model design of fluid-thermal-structural interaction problems[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 221165(in Chinese).
    [23]
    邱波, 张昊元, 国义军, 等. 高超声速飞行器表面横缝旋涡结构及气动热环境数值模拟[J]. 航空学报, 2015, 36(11): 3515-3521.

    QIU B, ZHANG H Y, GUO Y J, et al. Numerical investigation for vortexes and aerodynamic heating environment on transverse gap on hypersonic vehicle surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11): 3515-3521(in Chinese).
    [24]
    张昊元, 宗文刚, 桂业伟. 高超声速飞行器前缘缝隙流动数值模拟研究[J]. 宇航学报, 2014, 35(8): 893-900. doi: 10.3873/j.issn.1000-1328.2014.08.005

    ZHANG H Y, ZONG W G, GUI Y W. Numerical investigation of flow in leading-edge gap of hypersonic vehicle[J]. Journal of Astronautics, 2014, 35(8): 893-900(in Chinese). doi: 10.3873/j.issn.1000-1328.2014.08.005
    [25]
    李素循. 典型外形高超声速流动特性[M]. 北京: 国防工业出版社, 2007.

    LI S X. Hypersonic flow characteristics of typical shape[M]. Beijing: National Defense Industry Press, 2007 (in Chinese).
    [26]
    李海燕. 高超声速高温气体流场的数值模拟[D]. 绵阳: 中国空气动力研究与发展中心, 2007.

    LI H Y. Numerical simulation of hypersonic and high temperature gas flowfields[D]. Mianyang : China Aerodynamics Research and Development Center, 2007.
    [27]
    丁峰. 吸气式高超声速飞行器内外流一体化“全乘波”气动设计理论和方法研究[D]. 长沙: 国防科学技术大学, 2016.

    DING F. Research of a novel airframe/inlet integrated full-waverider aerodynamic design methodology for air-breathing hypersonic vehicles[D]. Changsha: National University of Defense Technology, 2016 (in Chinese).
    [28]
    陈冰雁, 徐国武. 临近空间高升阻比布局高速气动性能对比[J]. 力学季刊, 2014, 35(3): 464-472.

    CHEN B Y, XU G W. Comparison of aerodynamic characteristic of near space high lift-drag ratio configuration[J]. Chinese Quarterly of Mechanics, 2014, 35(3): 464-472(in Chinese).
    [29]
    唐伟. 新一代航天机动飞行器气动设计研究[D]. 西安: 西北工业大学, 2005.

    TANG W. Aerodynamic design study for new generation aeronautical maneuverable vehicle[D]. Xi’an : Northwestern Polytechnical University, 2005.
    [30]
    马强, 唐伟, 张鲁民. 带控制舵双锥体气动力工程计算方法研究[J]. 宇航学报, 2003, 24(6): 552-554. doi: 10.3321/j.issn:1000-1328.2003.06.002

    MA Q, TANG W, ZHANG L M. Engineering prediction method for aerodynamics of biconic vehicle with flaps[J]. Journal of Astronautics, 2003, 24(6): 552-554(in Chinese). doi: 10.3321/j.issn:1000-1328.2003.06.002
    [31]
    唐伟, 张勇, 李为吉, 等. 二次曲线截面弹身的气动设计及优化[J]. 宇航学报, 2004, 25(4): 429-433.

    TANG W, ZHANG Y, LI W J, et al. Aerodynamic design and optimization for vehicles with conic cross section[J]. Journal of Astronautics, 2004, 25(4): 429-433(in Chinese).
    [32]
    FENG Y, TANG W, GUI Y W. Aerodynamic configuration optimization by the integration of aerodynamics, aerothermodynamics and trajectory for hypersonic vehicles[J]. Chinese Science Bulletin, 2014, 59(33): 4608-4615. doi: 10.1007/s11434-014-0534-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(31)

    Article Metrics

    Article views(106) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return