Volume 49 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
ZHENG J K,TANG S J,GUO J. Closed-loop cooperative terminal guidance law based on predictor-corrector for hypersonic gliding vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3188-3196 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0043
Citation: ZHENG J K,TANG S J,GUO J. Closed-loop cooperative terminal guidance law based on predictor-corrector for hypersonic gliding vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3188-3196 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0043

Closed-loop cooperative terminal guidance law based on predictor-corrector for hypersonic gliding vehicles

doi: 10.13700/j.bh.1001-5965.2022.0043
More Information
  • Corresponding author: E-mail:tangsj@bit.edu.cn
  • Received Date: 21 Jan 2022
  • Accepted Date: 25 Mar 2022
  • Publish Date: 31 Mar 2022
  • A closed-loop guidance solution based on a flight time predictor and a flight profile corrector is proposed for the time cooperative problem in the terminal guiding phase of hypersonic glide vehicles with continuous energy decay. Firstly, parameterized proportional guidance flight profile with negative coefficient is designed. The remaining time of the vehicle could be predicted after the aerodynamic uncertainty identification. Secondly, the flight profile parameter is corrected by the numerical algorithm. Then the command could guide a single vehicle to meet time constraints. Thirdly, a closed-loop coordination strategy is designed. The time adjustment capability of the vehicle is analyzed with flight profile coefficient. Multiple vehicles could plan the expected flight time and corresponding flight profile independently for cooperative terminal guidance tasks. The simulation results show that the cooperative guidance law could meet the needs of time cooperative terminal guidance tasks, the position error is less than 5 meters, and the relative time error is less than 1 second.

     

  • loading
  • [1]
    李俊, 江振宇. 一种高超声速滑翔再入在线轨迹规划算法[J]. 北京航空航天大学学报, 2020, 46(3): 579-587.

    LI J, JIANG Z Y. Online trajectory planning algorithm for hypersonic glide re-entry problem[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 579-587(in Chinese).
    [2]
    岳彩红, 唐胜景, 王肖, 等. 高超声速伸缩式变形飞行器再入制导方法[J]. 北京航空航天大学学报, 2021, 47(6): 1288-1298.

    YUE C H, TANG S J, WANG X, et al. Reentry guidance method of hypersonic telescopic deformable vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1288-1298(in Chinese).
    [3]
    LIU X F, SHEN Z J, LU P. Entry trajectory optimization by second-order cone programming[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(2): 227-241. doi: 10.2514/1.G001210
    [4]
    胡锦川, 张晶, 陈万春. 高超声速飞行器平稳滑翔弹道解析解及其应用[J]. 北京航空航天大学学报, 2016, 42(5): 961-968.

    HU J C, ZHANG J, CHEN W C. Analytical solutions of steady glide trajectory for hypersonic vehicle and planning application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5): 961-968(in Chinese).
    [5]
    王荣刚, 许志, 唐硕, 等. 高超声速滑翔再入定向定速打击末制导算法[J]. 宇航学报, 2019, 40(6): 655-665.

    WANG R G, XU Z, TANG S, et al. Terminal guidance with impact angle constraint and deceleration control for a hypersonic glide-reentry vehicle[J]. Journal of Astronautics, 2019, 40(6): 655-665(in Chinese).
    [6]
    石国祥, 张科, 王佩, 等. 基于侧向机动能力预测的高超声速飞行器再入制导算法研究[J]. 西北工业大学学报, 2020, 38(3): 523-532. doi: 10.1051/jnwpu/20203830523

    SHI G X, ZHANG K, WANG P, et al. Algorithm of reentry guidance for hypersonic vehicle based on lateral maneuverability prediction[J]. Journal of Northwestern Polytechnical University, 2020, 38(3): 523-532(in Chinese). doi: 10.1051/jnwpu/20203830523
    [7]
    王肖, 郭杰, 唐胜景, 等. 基于解析剖面的时间协同再入制导[J]. 航空学报, 2019, 40(3): 322565.

    WANG X, GUO J, TANG S J, et al. Time-cooperative entry guidance based on analytical profile[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 322565(in Chinese).
    [8]
    赵建博, 杨树兴. 多导弹协同制导研究综述[J]. 航空学报, 2017, 38(1): 020256.

    ZHAO J B, YANG S X. Review of multi-missile cooperative guidance[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 020256(in Chinese).
    [9]
    HE S M, LIN D F. Three-dimensional optimal impact time guidance for antiship missiles[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(4): 941-948. doi: 10.2514/1.G003971
    [10]
    YAN X H, ZHU J H, KUANG M C, et al. A computational-geometry-based 3-dimensional guidance law to control impact time and angle[J]. Aerospace Science and Technology, 2020, 98: 105672. doi: 10.1016/j.ast.2019.105672
    [11]
    DONG W, WEN Q Q, XIA Q L, et al. Multiple-constraint cooperative guidance based on two-stage sequential convex programming[J]. Chinese Journal of Aeronautics, 2020, 33(1): 296-307. doi: 10.1016/j.cja.2019.07.026
    [12]
    李新三, 汪立新, 王明建, 等. 基于MPSC和CPN制导方法的协同制导律[J]. 北京航空航天大学学报, 2016, 42(9): 1857-1863.

    LI X S, WANG L X, WANG M J, et al. Cooperative guidance law based on MPSC and CPN guidance method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9): 1857-1863(in Chinese).
    [13]
    赵世钰, 周锐. 基于协调变量的多导弹协同制导[J]. 航空学报, 2008, 29(6): 1605-1611.

    ZHAO S Y, ZHOU R. Multi-missile cooperative guidance using coordination variables[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1605-1611(in Chinese).
    [14]
    WANG X F, ZHENG Y Y, LIN H. Integrated guidance and control law for cooperative attack of multiple missiles[J]. Aerospace Science and Technology, 2015, 42: 1-11. doi: 10.1016/j.ast.2014.11.018
    [15]
    WANG X F, ZHANG Y W, LIU D Z, et al. Three-dimensional cooperative guidance and control law for multiple reentry missiles with time-varying velocities[J]. Aerospace Science and Technology, 2018, 80: 127-143. doi: 10.1016/j.ast.2018.07.011
    [16]
    ZHAO E J, WANG S Y, CHAO T, et al. Multiple missiles cooperative guidance based on leader-follower strategy[C]//Proceedings of the IEEE Chinese Guidance, Navigation and Control Conference. Piscataway: IEEE Press, 2015: 1163-1167.
    [17]
    SINHA A, KUMAR S R. Supertwisting control-based cooperative salvo guidance using leader-follower approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3556-3565. doi: 10.1109/TAES.2020.2974044
    [18]
    WANG J W, ZHANG R. Terminal guidance for a hypersonic vehicle with impact time control[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(8): 1790-1798. doi: 10.2514/1.G003540
    [19]
    唐博, 席建祥, 刘太阳, 等. 俯冲段高超声速飞行器有限时间协同制导律设计[J]. 北京航空航天大学学报, 2021, 47(10): 2105-2117.

    TANG B, XI J X, LIU T Y, et al. Design of finite-time cooperative guidance law for hypersonic vehicles in dive phase[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2105-2117(in Chinese).
    [20]
    崔乃刚, 卢宝刚, 傅瑜, 等. 基于卡尔曼滤波的再入飞行器气动参数辨识[J]. 中国惯性技术学报, 2014, 22(6): 755-758.

    CUI N G, LU B G, FU Y, et al. Aerodynamic parameter identification of a reentry vehicle based on Kalman filter method[J]. Journal of Chinese Inertial Technology, 2014, 22(6): 755-758(in Chinese).
    [21]
    PATTERSON M A, RAO A V. GPOPS-Ⅱ: A MATLAB software for solving multiple-phase optimal control problems using HP-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming[J]. ACM Transactions on Mathematical Software, 2010, 41(1): 1-37.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(6)

    Article Metrics

    Article views(631) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return