Volume 49 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
XU H B,FAN J,NI M,et al. Molecular dynamics study on dry friction damper with temperature influence[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3031-3038 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0045
Citation: XU H B,FAN J,NI M,et al. Molecular dynamics study on dry friction damper with temperature influence[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3031-3038 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0045

Molecular dynamics study on dry friction damper with temperature influence

doi: 10.13700/j.bh.1001-5965.2022.0045
Funds:  National Natural Science Foundation of China (51775015); National Science and Technology Major Project (J2019-IV-0002-0069)
More Information
  • Corresponding author: E-mail:fanjiang@buaa.edu.cn
  • Received Date: 23 Jan 2022
  • Accepted Date: 25 Feb 2022
  • Publish Date: 09 Mar 2022
  • The prediction of friction factors based on multi-scale methods has become a research hotspot. The influence of temperature is the main issue for mechanical systems that operate at high temperatures, such as aero-engines. In this paper, we propose a novel method for predicting friction factors based on molecular modeling and the contact force under the influence of different temperatures. Considering that the increase in temperature enhances the adhesion of the micro convex body, a real area calculation method different from Hertz contact theory is proposed. The correctness of the proposed method is verified by comparing it with the experiment. The results show that the increase in temperature leads to the enhancement of adhesion of the micro convex body at the rough face. Real contact area is bigger than what the Hz contact theory predicts when adhesion is high due to the substantial plastic deformation of the micro convex body. On the other hand, it also leads to the attenuation of the mechanical properties of materials. With the increase in temperature, the tangential and normal contact forces decrease. Based on the multi-scale method, we provide a feasible research scheme for the prediction of friction factors of a high-temperature machine.

     

  • loading
  • [1]
    李琳, 刘久周, 李超. 航空发动机中的干摩擦阻尼器及其设计技术研究进展[J]. 航空动力学报, 2016, 31(10): 2305-2317.

    LI L, LIU J Z, LI C. Review of the dry friction dampers in aero-engine and their design technologies[J]. Journal of Aerospace Power, 2016, 31(10): 2305-2317(in Chinese).
    [2]
    何冰冰. 涡轮叶片干摩擦阻尼器动力学特性及减振特性研究[D]. 西安: 西北工业大学, 2018.

    HE B B. Dynamic and vibration reduction characteristics analysis of turbine blades with dry friction damper[D]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese).
    [3]
    单颖春, 郝燕平, 朱梓根, 等. 干摩擦阻尼块在叶片减振方面的应用与发展[J]. 航空动力学报, 2001, 16(3): 218-223.

    SHAN Y C, HAO Y P, ZHU Z G, et al. Application and development of platform friction damper for depressing resonant vibration of blades[J]. Journal of Aerospace Power, 2001, 16(3): 218-223(in Chinese).
    [4]
    ABRAHAM F F, BROUGHTON J Q, BERNSTEIN N, et al. Spanning the length scales in dynamic simulation[J]. Computers in Physics, 1998, 12(6): 538. doi: 10.1063/1.168756
    [5]
    BROUGHTON J Q, ABRAHAM F F, BERNSTEIN N, et al. Concurrent coupling of length scales: Methodology and application[J]. Physical Review B, 1999, 60(4): 2391-2403. doi: 10.1103/PhysRevB.60.2391
    [6]
    LUAN B Q, HYUN S, MOLINARI J F, et al. Multiscale modeling of two-dimensional contacts[J]. Physical Review E, 2006, 74(4): 046710. doi: 10.1103/PhysRevE.74.046710
    [7]
    PEN H, BAI Q, LIANG Y C, et al. Multiscale simulation of nanometric cutting of single crystal copper effect of different cutting speeds[J]. Acta Metallurgica Sinica (English Letters), 2009, 22: 440-446. doi: 10.1016/S1006-7191(08)60121-0
    [8]
    赵晟, 江五贵. 纳米尺度下切削过程的准连续介质力学模拟[J]. 摩擦学学报, 2009, 29(6): 505-511. doi: 10.3321/j.issn:1004-0595.2009.06.004

    ZHAO S, JIANG W G. Quasicontinuum simulations of nano-cutting process[J]. Tribology, 2009, 29(6): 505-511(in Chinese). doi: 10.3321/j.issn:1004-0595.2009.06.004
    [9]
    SHIARI B, MILLER R E, KLUG D D. Multiscale simulation of material removal processes at the nanoscale[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(11): 2384-2405. doi: 10.1016/j.jmps.2007.03.018
    [10]
    樊江, 戴琦晖, 王晋斌, 等. 带涂层干摩擦阻尼器的分子动力学仿真[J]. 航空动力学报, 2018, 33(10): 2333-2342.

    FAN J, DAI Q H, WANG J B, et al. Molecular dynamics simulations of dry friction dampers with coating[J]. Journal of Aerospace Power, 2018, 33(10): 2333-2342(in Chinese).
    [11]
    潘帅航, 尹念, 张执南. 微动界面连续干摩擦行为的分子动力学模拟[J]. 机械工程学报, 2018, 54(3): 82-87. doi: 10.3901/JME.2018.03.082

    PAN S H, YIN N, ZHANG Z N. Molecular dynamics simulation for continuous dry friction on fretting interfaces[J]. Journal of Mechanical Engineering, 2018, 54(3): 82-87(in Chinese). doi: 10.3901/JME.2018.03.082
    [12]
    ZHENG X, ZHU H T, KOSASIH B, et al. A molecular dynamics simulation of boundary lubrication: The effect of n-alkanes chain length and normal load[J]. Wear, 2013, 301(1-2): 62-69. doi: 10.1016/j.wear.2013.01.052
    [13]
    ZHENG X, ZHU H T, TIEU A K, et al. Roughness and lubricant effect on 3D atomic asperity contact[J]. Tribology Letters, 2014, 53(1): 215-223. doi: 10.1007/s11249-013-0259-y
    [14]
    LIU X M, LIU Z L, WEI Y G. Nanoscale friction behavior of the Ni-film/substrate system under scratching using MD simulation[J]. Tribology Letters, 2012, 46(2): 167-178. doi: 10.1007/s11249-012-9932-9
    [15]
    罗旋, 费维栋, 李超, 等. 材料科学中的分子动力学模拟研究进展[J]. 材料科学与工艺, 1996, 4(1): 124-128.

    LUO X, FEI W D, LI C, et al. Advance of molecular dynamics simulation in materials science[J]. Material Science and Technology, 1996, 4(1): 124-128(in Chinese).
    [16]
    杨继明. 纳米尺度摩擦行为的分子动力学模拟研究[D]. 重庆: 重庆大学, 2012.

    YANG J M. Molecular dynamics simulation of nano-scale friction behavior[D]. Chongqing: Chongqing University, 2012 (in Chinese).
    [17]
    GREENWOOD J, WILLIAMSON J. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1966, 295: 300-319.
    [18]
    HOOVER W G. Canonical dynamics: Equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3): 1695-1697. doi: 10.1103/PhysRevA.31.1695
    [19]
    李强. 接触力学与摩擦学的原理及其应用[M]. 北京: 清华大学出版社, 2011.

    LI Q. Principles and applications of contact mechanics and tribology [M]. Beijing: Tsinghua University Press, 2011(in Chinese).
    [20]
    刘如铁, 李溪滨, 苏春明, 等. 镍基高温自润滑材料的摩擦学特性研究[J]. 粉末冶金材料科学与工程, 1998, 3(3): 206-210.

    LIU R T, LI X B, SU C M, et al. Study on the tribological characteristics of high-temperature self-lubricating nickel-base material[J]. Materials Science and Engineering of Powder Metallargy, 1998, 3(3): 206-210(in Chinese).
    [21]
    张甜甜, 黄传兵, 兰昊, 等. 镍基耐高温自润滑刷式封严涂层研究[J]. 航空制造技术, 2017, 60(8): 24-29.

    ZHANG T T, HUANG C B, LAN H, et al. Investigation of Ni-based brush seal coatings with self-lubricating property at elevated temperature[J]. Aeronautical Manufacturing Technology, 2017, 60(8): 24-29(in Chinese).
    [22]
    DAW M S, BASKES M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals[J]. Physical Review B, 1984, 29(12): 6443-6453. doi: 10.1103/PhysRevB.29.6443
    [23]
    MA G L, YANG J Q, LIU Y, et al. Friction and wear behavior of nanocrystalline nickel in air and vacuum[J]. Tribology Letters, 2013, 49(3): 481-490. doi: 10.1007/s11249-012-0089-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views(466) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return