Volume 49 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
LIU H T,YANG N,LI D X,et al. Statistical performance of surveillance payload of Beihang Aeronautical Satellite-1[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2883-2889 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0057
Citation: LIU H T,YANG N,LI D X,et al. Statistical performance of surveillance payload of Beihang Aeronautical Satellite-1[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2883-2889 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0057

Statistical performance of surveillance payload of Beihang Aeronautical Satellite-1

doi: 10.13700/j.bh.1001-5965.2022.0057
Funds:  National Key R & D Program of China (2016YFB0502402); Beijing Scientific Research and Postgraduate Training Co-construction Project (25500002019117000)
More Information
  • Corresponding author: E-mail:htliucauc@qq.com
  • Received Date: 27 Jan 2022
  • Accepted Date: 04 Mar 2022
  • Publish Date: 22 Apr 2022
  • Beihang Aeronautical Satellite-1 is a scientific experiment satellite for wide-area aeronautical surveillance. The surveillance payload’s performance index and statistical methods are first put forward in order to assess the surveillance payload’s performance on Beihang Aeronautical Satellite-1. The radius of surveillance coverage, probability of detection, probability of identification, update interval of position report, and message rate of the surveillance payload are presented using in-orbit test data from Beihang Aeronautical Satellite-1. According to the statistical findings, the surveillance coverage radius is 1710 kilometers, the likelihood of detection is higher than 35%, the likelihood of identification is higher than 68%, and the time between location report updates is less than 8 seconds.

     

  • loading
  • [1]
    ICAO. The concept of space-based reception of automatic dependent surveillance-broadcast(ADS-B): A38-WP/132[R]. Montreal: ICAO, 2013.
    [2]
    ITU-R. Reception of automatic dependent surveillance broadcast via satellite and compatibility studies with incumbent systems in the frequency band 1088.7−1091.3 MHz: ITU-R M. 2413-0[R]. Geneve: ITU-R, 2015.
    [3]
    DELOVSKI T, WERNER K, RAWLIK T, et al. ADS-B over satellite: The world’s first ADS-B receiver in space[C]//Proceedings of the Small Satellites Systems and Services Symposium. Cologne: DLR, 2014: 1-16.
    [4]
    BLOMENHOFER H, PAWLITZKI A, ROSENTHAL P, et al. Space-based automatic dependent surveillance broadcast (ADS-B) payload for in-orbit demonstration[C]//Proceedings of the 6th Advanced Satellite Multimedia Systems Conference and 12th Signal Processing for Space Communications Workshop. Piscataway: IEEE Press, 2012: 160-165.
    [5]
    Flight Safety Foundation. Benefits analysis of space-based ADS-B[R]. Alexandria: Flight Safety Foundation, 2016.
    [6]
    BAKER K. Space-based ADS-B: Performance, architecture and market[C]//Proceedings of the Integrated Communications, Navigation and Surveillance Conference. Piscataway: IEEE Press, 2019: 1-10.
    [7]
    倪久顺, 陈利虎, 余孙全, 等. 星载ADS-B相关研究进展及展望[J]. 中国空间科学技术, 2022, 42(1): 30-37.

    NI J S, CHEN L H, YU S Q, et al. A review for space-based ADS-B[J]. Chinese Space Science and Technology, 2022, 42(1): 30-37(in Chinese).
    [8]
    DONNER A, KISSLING C, HERMENIER R. Satellite constellation networks for aeronautical communication: Traffic modelling and link load analysis[J]. IET Communications, 2010, 4(13): 1594-1606. doi: 10.1049/iet-com.2009.0260
    [9]
    GUO J, YANG L, CHEN Q, et al. Design of a low earth orbit satellite constellation network for air traffic surveillance[J]. Journal of Navigation, 2020, 73(6): 1263-1283. doi: 10.1017/S0373463320000260
    [10]
    余孙全, 陈利虎, 李松亭, 等. 高灵敏度星载ADS-B信号解调算法[J]. 太赫兹科学与电子信息学报, 2018, 16(5): 133-138.

    YU S Q, CHEN L H, LI S T, et al. High sensitivity detection algorithm for space-based ADS-B[J]. Journal of Terahertz Science and Electronic Information Technology, 2018, 16(5): 133-138(in Chinese).
    [11]
    REN P, WANG J, ZHANG P. Novel error correction algorithms for ADS-B signals with matched filter based decoding[J]. Physical Communication, 2019, 36: 100788. doi: 10.1016/j.phycom.2019.100788
    [12]
    REN P, WANG J, XUE W, et al. Novel confidence level labelling methods for ADS-B signals with coherent demodulation scheme[J]. IET Radar, Sonar & Navigation, 2020, 14(2): 268-278.
    [13]
    BETTRAY A, LITSCHKE O, BAGGEN L. Multi-beam antenna for space-based ADS-B[C]//Proceedings of the IEEE International Symposium on Phased Array Systems and Technology. Piscataway: IEEE Press, 2013: 227-231.
    [14]
    YU S Q, CHEN L, LI S, et al. Adaptive multi-beamforming for space-based ADS-B[J]. Journal of Navigation, 2019, 72(2): 359-374. doi: 10.1017/S0373463318000735
    [15]
    BUDROWEIT J, JAKSCH M P, DELOVSKI T. Design of a multi-channel ADS-B receiver for small satellite-based aircraft surveillance[C]//Proceedings of the IEEE Radio and Wireless Symposium. Piscataway: IEEE Press, 2019: 1-4.
    [16]
    WANG W, WU R, LIANG J. ADS-B signal separation based on blind adaptive beamforming[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6547-6556. doi: 10.1109/TVT.2019.2914233
    [17]
    LI K D, KANG J, REN H, et al. A reliable separation algorithm of ADS-B signal based on time domain[J]. IEEE Access, 2021, 9: 88019-88026. doi: 10.1109/ACCESS.2021.3082077
    [18]
    ZHANG Y, LI W, DOU Z. Performance analysis of overlapping space-based ADS-B signal separation based on FastICA[C]//Proceedings of the IEEE Globecom Workshops. Piscataway: IEEE Press, 2019: 19435143.
    [19]
    YU S Q, CHEN L H, LI S T, et al. Separation of space-based ADS-B signals with single channel for small satellite[C]//Proceedings of the IEEE International Conference on Signal and Image Processing. Piscataway: IEEE Press, 2018: 315-321.
    [20]
    WANG Y C, ZHANG X J, ZHANG T. A flooding-based routing algorithm for ADS-B packets transmission in leo satellite network[C]//Proceedings of the Integrated Communications, Navigation and Surveillance Conference. Piscataway: IEEE Press, 2019: 1-9.
    [21]
    GARCIA M A, STAFFORD J, MINNIX J, et al. Aireon space based ADS-B performance model[C]//Proceedings of the Integrated Communication, Navigation and Surveillance Conference. Piscataway: IEEE Press, 2015: 15202005.
    [22]
    刘海涛, 李少洋, 秦定本, 等. 共信道干扰环境下星基ADS-B系统监视性能[J]. 航空学报, 2049, 40(12): 220-233.

    LIU H T, LI S Y, QIN D B, et al. Surveillance performance of satellite-based ADS-B system in co-channel interference environment[J]. Acta Aeronautica et Astronautica Sinica, 2049, 40(12): 220-233(in Chinese).
    [23]
    EUROCONTROL. Standard document for radar surveillance in enroute airspace and major terminal areas[S]. Belgium: European Organisation for the Safety of Air Navigation, 1997.
    [24]
    RTCA. Minimum operational performance standards for 1090 MHz extended squitter automatic dependent surveillance-broadcast (ADS-B) and traffic information services-broadcast (TIS-B): RTCA DO-260B[S]. Washinton, D. C. : RTCA, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views(459) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return