Volume 49 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
XIAO R Y,YU J,MA Z X. Applicability of convolutional autoencoder in reduced-order model of unsteady compressible flows[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3445-3455 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0085
Citation: XIAO R Y,YU J,MA Z X. Applicability of convolutional autoencoder in reduced-order model of unsteady compressible flows[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3445-3455 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0085

Applicability of convolutional autoencoder in reduced-order model of unsteady compressible flows

doi: 10.13700/j.bh.1001-5965.2022.0085
Funds:  National Natural Science Foundation of China (11972064); Key Laboratory of Computational Aerodynamics, AVIC Aerodynamics Research Institute Foundation (YL2022XFX0405)
More Information
  • Corresponding author: E-mail:yuj@buaa.edu.cn
  • Received Date: 24 Feb 2022
  • Accepted Date: 27 May 2022
  • Publish Date: 06 Jun 2022
  • To effectively reduce the design cost and cycle time of using computational fluid dynamics (CFD) methods, the reduced-order model (ROM) has gained wide attention in recent years. For complex compressible flows, using linear methods such as proper orthogonal decomposition (POD) for flow field dimensionality reduction requires a large number of modes to ensure reconstruction accuracy. It has been shown that the mode number can be effectively reduced by using nonlinear dimensionality reduction methods. Convolutional autoencoder (CAE) is a neural network composed of the encoder and decoder, which can realize data dimensionality reduction and reconstruction, regarded as a nonlinear extension of POD method. CAE is used for nonlinear dimensionality reduction, and long short-term memory (LSTM) neural network is used for time evolution. To address flow incompressibility, the combination of Autoencoder and LSTM for flow field reconstruction has been extensively studied. We examine the one-dimensional Sod shock tube, Shu-Osher problem, two-dimensional Riemann problem and Kelvin-Helmholtz instability problem to test the validity of the ROM for unsteady compressible flows. The ROMs of Sod shock tube and Riemann problem are constructed based on POD by different modes for comparison. The results show that CAE-LSTM method can obtain high reconstruction and prediction accuracy on the premise of using less latents for unsteady compressible flows.

     

  • loading
  • [1]
    YU J A, YAN C, GUO M W. Non-intrusive reduced-order modeling for fluid problems: A brief review[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(16): 5896-5912. doi: 10.1177/0954410019890721
    [2]
    DOWELL E H, HALL K C, ROMANOWSKI M C. Eigenmode analysis in unsteady aerodynamics: Reduced order models[J]. Applied Mechanics Reviews, 1997, 50(6): 371-386. doi: 10.1115/1.3101718
    [3]
    SILVA W A. Identification of linear and nonlinear aerodynamic impulse responses using digital filter techniques[C]//Proceedings of the 22nd Atmospheric Flight Mechanics Conference. Reston: AIAA, 1997: 3712.
    [4]
    EIVAZI H, VEISI H, NADERI M H, et al. Deep neural networks for nonlinear model order reduction of unsteady flows[J]. Physics of Fluids, 2020, 32(10): 105104. doi: 10.1063/5.0020526
    [5]
    BENNER P, GUGERCIN S, WILLCOX K. A survey of projection-based model reduction methods for parametric dynamical systems[J]. SIAM Review, 2015, 57(4): 483-531. doi: 10.1137/130932715
    [6]
    陈刚, 李跃明. 非定常流场降阶模型及其应用研究进展与展望[J]. 力学进展, 2011, 41(6): 686-701. doi: 10.6052/1000-0992-2011-6-lxjzJ2011-009

    CHEN G, LI Y M. Advances and prospects of the reduced order model for unsteady flow and its application[J]. Advances in Mechanics, 2011, 41(6): 686-701(in Chinese). doi: 10.6052/1000-0992-2011-6-lxjzJ2011-009
    [7]
    寇家庆. 非定常气动力建模与流场降阶方法研究[D]. 西安: 西北工业大学, 2018: 11.

    KOU J Q. Reduced-order modeling methods for unsteady aerodynamics and fluid flows[D]. Xi’an: Northwestern Polytechnical University, 2018: 11(in Chinese).
    [8]
    寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学学报, 2018, 36(2): 163-179.

    KOU J Q, ZHANG W W. Dynamic mode decomposition and its applications in fluid dynamics[J]. Acta Aerodynamica Sinica, 2018, 36(2): 163-179(in Chinese).
    [9]
    JIMENEZ L O, LANDGREBE D A. Supervised classification in high-dimensional space: Geometrical, statistical, and asymptotical properties of multivariate data[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 1998, 28(1): 39-54. doi: 10.1109/5326.661089
    [10]
    DEMERS D, COTTRELL G W. Non-linear dimensionality reduction[C]//Advances in Neural Information Processing Systems 5. New York: ACM, 1992: 580-587.
    [11]
    MAULIK R, LUSCH B, BALAPRAKASH P. Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders[J]. Physics of Fluids, 2021, 33(3): 037106. doi: 10.1063/5.0039986
    [12]
    EBDEN M. Gaussian: A quick introduction[EB/OL]. (2015-08-29)[2022-02-24]. https://arxiv.org/abs/1505.02965.
    [13]
    SUN G, WANG S Y. A review of the artificial neural network surrogate modeling in aerodynamic design[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(16): 5863-5872. doi: 10.1177/0954410019864485
    [14]
    YONDO R, ANDRÉS E, VALERO E. A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses[J]. Progress in Aerospace Sciences, 2018, 96: 23-61. doi: 10.1016/j.paerosci.2017.11.003
    [15]
    KUTZ J N. Deep learning in fluid dynamics[J]. Journal of Fluid Mechanics, 2017, 814: 1-4. doi: 10.1017/jfm.2016.803
    [16]
    张伟伟, 朱林阳, 刘溢浪, 等. 机器学习在湍流模型构建中的应用进展[J]. 空气动力学学报, 2019, 37(3): 444-454.

    ZHANG W W, ZHU L Y, LIU Y L, et al. Progresses in the application of machine learning in turbulence modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3): 444-454(in Chinese).
    [17]
    TOMPSON J, SCHLACHTER K, SPRECHMANN P, et al. Accelerating eulerian fluid simulation with convolutional networks[C]//Proceedings of the 34th International Conference on Machine Leavning. NewYork: ACM, 2017, 70: 3424-3433.
    [18]
    LING J, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807: 155-166. doi: 10.1017/jfm.2016.615
    [19]
    MIYANAWALA T P, JAIMAN R K. An efficient deep learning technique for the Navier-Stokes equations: Application to unsteady wake flow dynamics[EB/OL]. (2018-08-15)[2022-02-24]. https://arxiv.org/abs/1710.09099.
    [20]
    尹明朗, 寇家庆, 张伟伟. 一种高泛化能力的神经网络气动力降阶模型[J]. 空气动力学学报, 2017, 35(2): 205-213.

    YIN M L, KOU J Q, ZHANG W W. A reduced-order aer ody-namic model with high generalization capability based on neural network[J]. Acta Aerodynamica Sinica, 2017, 35(2): 205-213(in Chinese).
    [21]
    王怡星, 李东风, 陈刚. 一种基于流动特征的气动力深度神经网络降阶模型[C]//第十届全国流体力学学术会议. 北京: 中国力学学会, 2018: 358.

    WANG Y X, LI D F, CHEN G. A reduced order model of aerodynamic depth neural network based on flow characteristics[C]//The 10th National Conference on fluid mechanics. Beijing: CSTAM, 2018: 358(in Chinese).
    [22]
    武频, 孙俊五, 封卫兵. 基于自编码器和LSTM的模型降阶方法[J]. 空气动力学学报, 2021, 39(1): 73-81.

    WU P, SUN J W, FENG W B. Reduced order model based on autoencoder and long short-term memory network[J]. Acta Aerodynamica Sinica, 2021, 39(1): 73-81(in Chinese).
    [23]
    SIROVICH L. Turbulence and the dynamics of coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561-590. doi: 10.1090/qam/910462
    [24]
    LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [25]
    HYVÄRINEN A, KÖSTER U. Complex cell pooling and the statistics of natural images[J]. Network:Computation in Neural Systems, 2007, 18(2): 81-100. doi: 10.1080/09548980701418942
    [26]
    ZEILER M D, FERGUS R. Stochastic pooling for regularization of deep convolutional neural networks[EB/OL]. (2013-01-16)[2022-02-24].https://arxiv.org/abs/1301.3557.
    [27]
    MATHIEU M, HENAFF M, LECUN Y. Fast training of convolutional networks through FFTs[EB/OL]. (2014-03-06)[2022-02-24].https://arxiv.org/abs/1312.5851.
    [28]
    叶舒然, 张珍, 宋旭东, 等. 自动编码器在流场降阶中的应用[J]. 空气动力学学报, 2019, 37(3): 498-504.

    YE S R, ZHANG Z, SONG X D, et al. Applications of autoencoder in reduced-order modeling of flow field[J]. Acta Aerodynamica Sinica, 2019, 37(3): 498-504(in Chinese).
    [29]
    RAMACHANDRAN P, ZOPH B, LE Q V. Searching for activation functions[EB/OL]. (2017-10-27)[2022-02-24]. https://arxiv.org/abs/1710.05941.
    [30]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [31]
    SCHWANDER L, RAY D, HESTHAVEN J S. Controlling oscillations in spectral methods by local artificial viscosity governed by neural networks[J]. Journal of Computational Physics, 2021, 431(1): 110144.
    [32]
    KINGMA D P, BA J. Adam: A method for stochastic optimization[EB/OL]. (2017-01-30)[2022-02-24]. https://arxiv.org/abs/1412.6980.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)

    Article Metrics

    Article views(89) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return