Volume 49 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
YANG M,WANG L,YU F,et al. Design and on-orbit application of radiator for space optical remote sensor with large aperture[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3293-3302 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0116
Citation: YANG M,WANG L,YU F,et al. Design and on-orbit application of radiator for space optical remote sensor with large aperture[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3293-3302 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0116

Design and on-orbit application of radiator for space optical remote sensor with large aperture

doi: 10.13700/j.bh.1001-5965.2022.0116
Funds:  National Science and Technology Major Project
More Information
  • Corresponding author: E-mail:ouyangmingsn@sina.com
  • Received Date: 04 Mar 2022
  • Accepted Date: 22 Jul 2022
  • Available Online: 09 Sep 2022
  • Publish Date: 09 Sep 2022
  • To meet the light-weight and high-efficiency heat dissipation requirements of space optical remote sensors with large aperture, a space radiator based on high thermal conductivity graphite film is proposed for the first time. The basic physical properties, structural composition, mechanical properties, thermal properties and space environment adaptability of the high thermal conductivity graphite film were tested and analyzed. The common disadvantages in the application of high thermal conductivity graphite film, such as low thermal conductivity in the thickness direction, low mechanical strength, low hardness, thin thickness and small single block size, are solved by combining the high thermal conductivity graphite film with heat pipe and honeycomb plate. The high thermal conductivity graphite radiator is simulated and compared with two traditional radiators. The simulation results indicated that under the same heat dissipation capacity, the weight of high thermal conductivity graphite radiator is only about 1/3 of that of traditional aluminum alloy plate radiator, and about 1/2 of that of traditional aluminum honeycomb radiator. The heat dissipation performance of the radiator is verified by heat balance experiment and on-orbit flight application. The verification results show that the simulation values are in good agreement with the on-orbit values. The radiator not only has excellent mechanical and thermal performance, but also has significant weight reduction advantages, and can be widely used in the heat radiation of spacecraft.

     

  • loading
  • [1]
    苗建印, 钟奇, 赵啟伟. 航天器热控制技术[M]. 北京: 北京理工大学出版社, 2018.

    MIAO J Y, ZHONG Q, ZHAO Q W. Spacecraft thermal control technology[M]. Beijing: Beijing Insititute of Technology Press, 2018 (in Chinese).
    [2]
    赵振明, 鲁盼, 宋欣阳. “高分二号”卫星相机热控系统的设计与验证[J]. 航天返回与遥感, 2015, 36(4): 34-40. doi: 10.3969/j.issn.1009-8518.2015.04.005

    ZHAO Z M, LU P, SONG X Y. Thermal design and test for high resolution space camera on GF-2 satellite[J]. Spacecraft Recovery & Remote Sensing, 2015, 36(4): 34-40(in Chinese). doi: 10.3969/j.issn.1009-8518.2015.04.005
    [3]
    孟庆亮, 杨涛, 于志, 等. 空间遥感器用环路热管瞬态数值模拟与在轨验证[J]. 北京航空航天大学学报, 2020, 46(11): 2045-2055. doi: 10.13700/j.bh.1001-5965.2019.0584

    MENG Q L, YANG T, YU Z, et al. Transient numerical simulation and on-orbit verification of loop heat pipe used for space remote sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2045-2055(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0584
    [4]
    于峰, 徐娜娜, 赵宇, 等. “高分四号”卫星相机热控系统设计及验证[J]. 航天返回与遥感, 2016, 37(4): 72-79. doi: 10.3969/j.issn.1009-8518.2016.04.010

    YU F, XU N N, ZHAO Y, et al. Thermal design and test for space camera on GF-4 satellite[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(4): 72-79(in Chinese). doi: 10.3969/j.issn.1009-8518.2016.04.010
    [5]
    CHANG H. Optimization of a heat pipe radiator design[C]//Proceedings of the 19th Thermophysics Conference. Reston: AIAA, 1984.
    [6]
    刘欣, 梁新刚. 太空辐射器传热优化设计及分析[J]. 宇航学报, 2016, 37(5): 605-611.

    LIU X, LIANG X G. Optimization design and analysis of heat transfer for space radiator[J]. Journal of Astronautics, 2016, 37(5): 605-611(in Chinese).
    [7]
    张学军, 樊延超, 鲍赫, 等. 超大口径空间光学遥感器的应用和发展[J]. 光学精密工程, 2016, 24(11): 2613-2626. doi: 10.3788/OPE.20162411.2613

    ZHANG X J, FAN Y C, BAO H, et al. Applications and development of ultra large aperture space optical remote sensors[J]. Optics and Precision Engineering, 2016, 24(11): 2613-2626(in Chinese). doi: 10.3788/OPE.20162411.2613
    [8]
    李宣, 徐勇, 李林霜, 等. 聚酰亚胺基高定向石墨膜的研究进展[J]. 炭素技术, 2015, 34(4): 1-5. doi: 10.14078/j.cnki.1001-3741.2015.04.001

    LI X, XU Y, LI L S, et al. Research progress of polyimide-based highly oriented graphite films[J]. Carbon Techniques, 2015, 34(4): 1-5(in Chinese). doi: 10.14078/j.cnki.1001-3741.2015.04.001
    [9]
    张姗姗. 高导热石墨膜增强C/C复合材料的制备与结构性能研究[D]. 北京: 北京化工大学, 2018.

    ZHANG S S. Preparation and structural properties of C/C composites reinforced by high thermal conductivity graphite films[D]. Beijing: Beijing University of Chemical Technology, 2018 (in Chinese).
    [10]
    MA Z K, LIU L, LIAN F, et al. Three-dimensional thermal conductive behavior of graphite materials sintered from ribbon mesophase pitch-based fibers[J]. Materials Letters, 2012, 66(1): 99-101. doi: 10.1016/j.matlet.2011.08.024
    [11]
    崔正威, 袁观明, 董志军, 高定向导热炭材料的研究进展[J]. 中国材料进展, 2020, 39(6): 450-457.

    CUI Z W , YUAN G M, DONG Z J . Research progress on carbon materials with high-oriented thermal conductivity[J]. Materials China , 2020, 39(6): 450-457.
    [12]
    童叶龙, 李国强, 余雷, 等. 高热流CCD器件散热与精密控温技术[J]. 航天返回与遥感, 2014, 35(5): 46-53. doi: 10.3969/j.issn.1009-8518.2014.05.007

    TONG Y L, LI G Q, YU L, et al. Heat dissipation and precise temperature control for high-power CCD assembly[J]. Spacecraft Recovery & Remote Sensing, 2014, 35(5): 46-53(in Chinese). doi: 10.3969/j.issn.1009-8518.2014.05.007
    [13]
    侯增祺, 胡金刚. 航天器热控制技术: 原理及其应用[M]. 北京: 中国科学技术出版社, 2007: 326-328

    HOU Z Q, HU J G. Thermal control technology of spacecraft: Principle and application[M]. Beijing: China Science and Technology Press, 2007: 326-328 (in Chinese).
    [14]
    杨世铭, 陶文铨. 传热学[M]. 第4版. 北京: 高等教育出版社, 2006.

    YANG S M, TAO W Q. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006 (in Chinese).
    [15]
    李玮, 谢宗蕻, 赵剑. 蜂窝芯体面外方向导热系数等效研究[J]. 真空与低温, 2010, 16(3): 162-166.

    LI W, XIE Z H, ZHAO J. The research on the out-of-plane equivalent thermal conductivity of honeycomb cores[J]. Vacuum and Cryogenics, 2010, 16(3): 162-166(in Chinese).
    [16]
    SWANN R T, PTTIMAN C M. Analysis of effective thermal conductivities of Honney core and corrugated core Sandwich Panels: Technical note D-714 [R]. Washington , D. C.: NASA, 1961.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(5)

    Article Metrics

    Article views(163) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return