Volume 49 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
SHI T,ZHUANG X B,LIN Z J,et al. Satellite selection based on parallel genetic algorithm for high orbit autonomous satellite navigation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3528-3536 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0118
Citation: SHI T,ZHUANG X B,LIN Z J,et al. Satellite selection based on parallel genetic algorithm for high orbit autonomous satellite navigation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3528-3536 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0118

Satellite selection based on parallel genetic algorithm for high orbit autonomous satellite navigation

doi: 10.13700/j.bh.1001-5965.2022.0118
More Information
  • Corresponding author: E-mail:zhuangxb@mail.sysu.edu.cn
  • Received Date: 04 Mar 2022
  • Accepted Date: 02 Jul 2022
  • Available Online: 16 Sep 2022
  • Publish Date: 14 Sep 2022
  • After the BeiDou-3 navigation satellite system was finished, the performance of high-orbit autonomous navigation was improved, but it also occasionally resulted in the redundancy of visible satellites. In order to reduce the arithmetic operations to ensure the real-time performance, based on a multiple-population parallel genetic algorithm (PGA), a new method to quickly select the optimal combination of visible satellites was proposed. The algorithm chooses the weighted dilution of precision (WDOP) as the fitness function, uses sub-populations in coarse-grained to speed up the search, and improves the searchability through the differential setting of mutation factors and the information exchange between sub-populations. The simulation experiments result of 7 or more satellite selection tasks in several typical high orbit environments show that the average absolute error between the PGA-based selection algorithm solution and the optimal solution obtained by the ergodic method is less than 0.1, and the maximum relative error is less than 1%. The outcomes demonstrate that, when the receiver employs the four-system integrated navigation in a typical high-orbit environment, the algorithm can efficiently execute the task of choosing satellites for the specified number of satellites fast and precisely.

     

  • loading
  • [1]
    SHI T, ZHUANG X, XIE L. Performance evaluation of multi-GNSSs navigation in super synchronous transfer orbit and geostationary earth orbit[J]. Satellite Navigation, 2021, 2(1): 1-13. doi: 10.1186/s43020-020-00033-9
    [2]
    ACHARYA R. Understanding satellite navigation[M]. New York: Academic Press, 2015.
    [3]
    YARLAGADDA R, ALI I, AL-DHAHIR N, et al. GPS GDOP metric[J]. IEE Proceedings-Radar, Sonar and Navigation, 2000, 147(5): 259-264. doi: 10.1049/ip-rsn:20000554
    [4]
    丛丽, ABIDAT A I , 谈展中. 卫星导航几何因子的分析和仿真[J]. 电子学报, 2006, 34(12): 2204-2208. doi: 10.3321/j.issn:0372-2112.2006.12.017

    CONG L, ABIDAT A I, TAN Z Z. Analysis and simulation of the GDOP of satellite navigation[J]. Acta Electronica Sinica, 2006, 34(12): 2204-2208(in Chinese). doi: 10.3321/j.issn:0372-2112.2006.12.017
    [5]
    KIHARA M, OKADA T. A satellite selection method and accuracy for the global positioning system[J]. Navigation, 1984, 31(1): 8-20. doi: 10.1002/j.2161-4296.1984.tb00856.x
    [6]
    金玲, 黄智刚, 李锐, 等. 多卫导组合系统的快速选星算法研究[J]. 电子学报, 2009, 37(9): 1931-1936.

    JIN L, HUANG Z G, LI R, et al. Study on fast satellite selection algorithm for integrated navigation[J]. Acta Electronica Sinica, 2009, 37(9): 1931-1936(in Chinese).
    [7]
    MOSAVI M R, DIVBAND M. Calculation of geometric dilution of precision using adaptive filtering technique based on evolutionary algorithms[C]//Proceedings of the International Conference on Electrical and Control Engineering. Piscataway: IEEE Press, 2010: 4842-4845.
    [8]
    PHATAK M S. Recursive method for optimum GPS satellite selection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 751-754. doi: 10.1109/7.937488
    [9]
    王尔申, 贾超颖, 曲萍萍, 等. 基于混沌粒子群优化的北斗/GPS 组合导航选星算法[J]. 北京航空航天大学学报, 2019, 45(2): 259-265.

    WANG E S, JIA C Y, QU P P, et al. BDS/GPS integrated navigation satellite selection algorithm based on chaos particle swarm optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 259-265(in Chinese).
    [10]
    宋丹, 许承东, 胡春生, 等. 基于遗传算法的多星座选星方法[J]. 宇航学报, 2015, 36(3): 300-308.

    SONG D, XU C D, HU C S, et al. Satellite selection with genetic algorithm under multi-constellation[J]. Journal of Astronautics, 2015, 36(3): 300-308(in Chinese).
    [11]
    WANG M, SHAN T, LI M, et al. GNSS-based orbit determination method and flight performance for geostationary satellites[J]. Journal of Geodesy, 2021, 95(8): 89. doi: 10.1007/s00190-021-01545-1
    [12]
    葛继科, 邱玉辉, 吴春明, 等. 遗传算法研究综述[J]. 计算机应用研究, 2008, 25(10): 2911-2916. doi: 10.3969/j.issn.1001-3695.2008.10.008

    GE J K, QIU Y H, WU C M, et al. Summary of genetic algorithms research[J]. Application Research of Computers, 2008, 25(10): 2911-2916(in Chinese). doi: 10.3969/j.issn.1001-3695.2008.10.008
    [13]
    岳嵚, 冯珊. 粗粒度并行遗传算法的计算性能分析[J]. 武汉理工大学学报, 2008, 30(7): 107-110.

    YUE Q, FENG S. Performance analysis of thr coarse-grained parallel[J]. Journal of Wuhan University of Technology, 2008, 30(7): 107-110(in Chinese).
    [14]
    郭彤城, 慕春棣. 并行遗传算法的新进展[J]. 系统工程理论与实践, 2002, 22(2): 15-23. doi: 10.3321/j.issn:1000-6788.2002.02.003

    GUO T C, MU C D. The parallel drifts of genetic algorithms[J]. Systems Engineering-Theory & Practice, 2002, 22(2): 15-23(in Chinese). doi: 10.3321/j.issn:1000-6788.2002.02.003
    [15]
    丁孟为. 遗传算法在多核系统上的性能分析和优化[D]. 上海: 上海交通大学, 2012.

    DING M W. Performance analysis and optimization of genetic algorithms on multi-core systems[D]. Shanghai: Shanghai Jiao Tong University, 2012 (in Chinese).
    [16]
    SIVANANDAM S N, DEEPA S N. Introduction to genetic algorithms[M]. Berlin: Springer, 2008.
    [17]
    程博文, 刘伟伟, 何熊文, 等. 猎户座飞船电子系统设计特点分析与启示[J]. 航天器工程, 2016, 25(4): 102-107.

    CHENG B W, LIU W W, HE X W, et al. Research on Orion electronic system[J]. Spacecraft Engineering, 2016, 25(4): 102-107(in Chinese).
    [18]
    王梦丽, 孙广富, 王飞雪, 等. 混合星座导航系统的加权几何精度因子分析[J]. 中国空间科学技术, 2007, 27(5): 50-56.

    WANG M L, SUN G F, WANG F X, et al. Weighted geometric dilution of precisio’s analysis for mixed constellation navigation sytem[J]. Chinese Space Science and Technology, 2007, 27(5): 50-56(in Chinese).
    [19]
    WON D H, AHN J, LEE S W, et al. Weighted DOP with consideration on elevation-dependent range errors of GNSS satellites[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(12): 3241-3250. doi: 10.1109/TIM.2012.2205512
    [20]
    ZHENG L, LU Y, GUO M, et al. Architecture-based design and optimization of genetic algorithms on multi- and many-core systems[J]. Future Generation Computer Systems, 2014, 38: 75-91. doi: 10.1016/j.future.2013.09.029
    [21]
    LIENIG J. A parallel genetic algorithm for performance-driven VLSI routing[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 29-39. doi: 10.1109/4235.585890
    [22]
    LIU H, CAO J, CHENG X, et al. The data processing and analysis for the CE-5T1 GNSS experiment[J]. Advances in Space Research, 2017, 59(3): 895-906. doi: 10.1016/j.asr.2016.06.035
    [23]
    THOELERT S, ANTREICH F, ENNEKING C, et al. BeiDou 3 signal quality analysis and its impact on users[J]. Navigation: Journal of the Institute of Navigation, 2019, 66(4): 695-704. doi: 10.1002/navi.331
    [24]
    LIU H, CHENG X, TANG G, et al. GNSS performance research for MEO, GEO, and HEO[C]//Proceedings of the China Satellite Navigation Conference. Berlin: Springer, 2017: 37-45.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views(182) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return