Volume 49 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
PENG L,LI L,ZHAO W. Numerical study on coupled heat transfer of rotating disc in centrifugal atomization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3456-3466 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0152
Citation: PENG L,LI L,ZHAO W. Numerical study on coupled heat transfer of rotating disc in centrifugal atomization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3456-3466 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0152

Numerical study on coupled heat transfer of rotating disc in centrifugal atomization

doi: 10.13700/j.bh.1001-5965.2022.0152
Funds:  Youth Fund of State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences (QN20210004)
More Information
  • Corresponding author: E-mail:lilong@imech.ac.cn
  • Received Date: 15 Mar 2022
  • Accepted Date: 26 May 2022
  • Publish Date: 23 Jun 2022
  • Rotating disk atomization is an important method to prepare spherical metal powder. In the preparation of high-melting-point metal powders, by this method, thermal protection is required for both the turntable structure itself and the lower-end driving motor. The coupled heat transfer problem of centrifugal atomization flow field model of molten aluminum was analyzed by numerical simulation, and the temperature field distribution of disk under different materials and disk structures was given. To improve the cooling efficiency, a new type of rotary disk thermal protection structure with fins was developed. The heat dissipation mechanism of the fin structure was analyzed, and the thermal protection effects of different fin positions, fin thickness and fin diameter were compared. The results revealed that the metal rotating shaft with larger specific heat capacity and lower thermal conductivity has lower temperature at its bottom. Moreover, the annular nitrogen flow field formed between the fin and the rotary disk is the main reason to improve the heat dissipation capacity of the rotating shaft. Finally, the lower position the fins, the larger diameter, and the thicker the thickness , the lower the temperature at the bottom of the shaft, resulting in a better cooling effect.

     

  • loading
  • [1]
    SIMONS M. Additive manufacturing—A revolution in progress? Insights from a multiple case study[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1): 735-749.
    [2]
    杨兵, 刘颖. BGA封装技术[J]. 电子与封装, 2003, 3(4): 6-13.

    YANG B, LIU Y. BGA packaging technology[J]. Electronics & Packaging, 2003, 3(4): 6-13(in Chinese).
    [3]
    KIM C K, KIM K H, PARK J M, et al. Development of advanced research reactor fuels using centrifugal atomization technology[J]. Metals and Materials, 1999, 5(2): 149-156. doi: 10.1007/BF03026045
    [4]
    SOVA A, DOUBENSKAIA M, TROFIMOV E, et al. Cold spray of metal powder mixtures: Achievements, issues and perspectives[J]. Transactions of the Indian Institute of Metals, 2021, 74(3): 559-570. doi: 10.1007/s12666-020-02165-7
    [5]
    高莹, 顾毅, 吴艺辉, 等. 铁锰无磁合金粉的水雾化法生产工艺研究[J]. 粉末冶金技术, 2018, 36(6): 465-469.

    GAO Y, GU Y, WU Y H, et al. Research on production technology of nonmagnetic Fe-Mn alloy powders by water atomization[J]. Powder Metallurgy Technology, 2018, 36(6): 465-469(in Chinese).
    [6]
    刘英杰, 胡强, 赵新明, 等. 增材制造用高流动性铝合金粉末制备技术研究[J]. 稀有金属材料与工程, 2021, 50(5): 1767-1774.

    LIU Y J, HU Q, ZHAO X M, et al. Investigation of centrifugal atomization technology of high fluidity aluminium alloy powder for additive manufacturing[J]. Rare Metal Materials and Engineering, 2021, 50(5): 1767-1774(in Chinese).
    [7]
    TANG J J, NIE Y, LEI Q, et al. Characteristics and atomization behavior of Ti-6Al-4V powder produced by plasma rotating electrode process[J]. Advanced Powder Technology, 2019, 30(10): 2330-2337. doi: 10.1016/j.apt.2019.07.015
    [8]
    王建军. 中国雾化制粉技术现状简介[J]. 粉末冶金工业, 2016, 26(5): 1-4.

    WANG J J. Brief introduction to the present situation of atomization powder technology in China[J]. Powder Metallurgy Industry, 2016, 26(5): 1-4(in Chinese).
    [9]
    杨洪涛, 卢志辉, 孙志杨, 等. 等离子旋转电极雾化制粉设备国内研究现状[J]. 粉末冶金工业, 2021, 31(4): 88-93.

    YANG H T, LU Z H, SUN Z Y, et al. Domestic research status of plasma rotation electrode process equipment[J]. Powder Metallurgy Industry, 2021, 31(4): 88-93(in Chinese).
    [10]
    LABRECQUE C, ANGERS R, TREMBLAY R, et al. Inverted disk centrifugal atomization of AZ91 magnesium alloy[J]. Canadian Metallurgical Quarterly, 1997, 36(3): 169-175. doi: 10.1179/cmq.1997.36.3.169
    [11]
    ÖZTÜRK S, ARSLAN F. Production of rapidly solidified metal powders by water cooled rotating disc atomisation[J]. Powder Metallurgy, 2013, 44(2): 171-176.
    [12]
    ÖZTÜRK S, ARSLAN F, ÖZTÜRK B. Effect of process parameters on production of metal powders by water jet cooled rotating disc atomisation[J]. Powder Metallurgy, 2013, 48(2): 163-170.
    [13]
    ÖZTÜRK S, ARSLAN F, ÖZTÜRK B. Effect of production parameters on cooling rates of AA2014 alloy powders produced by water jet cooled, rotating disc atomisation[J]. Powder Metallurgy, 2013, 46(4): 342-348.
    [14]
    ÖZTÜRK S, USTA G, ÖZTÜRK B. Production of bronze powders by water jet cooled rotating disc atomisation[J]. Powder Metallurgy, 2013, 54(3): 393-399.
    [15]
    SAN J Y, SHIAO W Z. Effects of jet plate size and plate spacing on the stagnation Nusselt number for a confined circular air jet impinging on a flat surface[J]. International Journal of Heat and Mass Transfer, 2006, 49(19-20): 3477-3486. doi: 10.1016/j.ijheatmasstransfer.2006.02.055
    [16]
    夏盛勇, 胡春波. 液态铝和三氧化二铝物性参数计算方法综述[J]. 推进技术, 2019, 40(5): 961-969.

    XIA S Y, HU C B. Review of physical property calculations of liquid aluminum and alumina[J]. Journal of Propulsion Technology, 2019, 40(5): 961-969(in Chinese).
    [17]
    MILLS K C. Recommended values of thermophysical properties for selected commercial alloys[M]. Cambridge: Woodhead, 2002.
    [18]
    范瑞杰. 基于ANSYS的热轧辊蠕变疲劳寿命的预测[D]. 秦皇岛: 燕山大学, 2014: 29-30.

    FAN R J. The hot roll creep fatigue life prediction based on the ansys platform[D]. Qinhuangdao: Yanshan University, 2014: 29-30(in Chinese).
    [19]
    魏泽辉, 高世杰, 闫素英, 等. 基于极差分析与费用年值法的太阳能-空气源热泵互补供热系统的正交优化[J]. 可再生能源, 2019, 37(8): 1146-1151.

    WEI Z H, GAO S J, YAN S Y, et al. Orthogonal experimental of the solar heating system assisted with air source heat pump based on annual cost and solar fraction[J]. Renewable Energy Resources, 2019, 37(8): 1146-1151(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(7)

    Article Metrics

    Article views(62) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return