Volume 49 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
LU H B,CAI Y J,LI S. Optimization method of thermo-elastic lattice structure based on surrogate models of microstructures[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3432-3444 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0155
Citation: LU H B,CAI Y J,LI S. Optimization method of thermo-elastic lattice structure based on surrogate models of microstructures[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3432-3444 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0155

Optimization method of thermo-elastic lattice structure based on surrogate models of microstructures

doi: 10.13700/j.bh.1001-5965.2022.0155
More Information
  • Corresponding author: E-mail:im_caiyujie@163.com
  • Received Date: 17 Mar 2022
  • Accepted Date: 15 May 2022
  • Publish Date: 22 Jul 2022
  • Lattice material is a new type of lightweight and multifunctional material, which has a variety of microstructures and high porosity. Excellent macroscopic properties can be obtained by designing its mesoscale features. To maximize the design potential of materials and structures, an optimization method for the thermo-elastic lattice structure is proposed. As for mesoscale material research, the effective thermo-elastic properties prediction of three-dimensional lattice materials is implemented. Relevant coefficients are solved using the idea of the representative volume method under periodic boundary conditions. Surrogate models are constructed to build the relationship between macroscopic responses and microstructures, and are proved to have good accuracy through error verification tests. As for macroscale material research, a structural optimization model filled with equivalent materials is established. Considering the thermal and mechanical loads, a mathematical model for structural optimization of thermo-elastic lattice structure with minimum strain energy is proposed using the surrogate models of effective properties as the material interpolation schemes. The result of an optimal spatially varying metamaterial is obtained in a typical three-dimensional structure example, and the thermal stiffness of the structure is improved under a certain volume constraint, demonstrating the effectiveness of the optimization method.

     

  • loading
  • [1]
    杨亚政, 杨嘉陵, 曾涛, 等. 轻质多孔材料研究进展[J]. 力学季刊, 2007, 28(4): 503-516. doi: 10.3969/j.issn.0254-0053.2007.04.001

    YANG Y Z, YANG J L, ZENG T, et al. Progress in research work of light materials[J]. Chinese Quarterly of Mechanics, 2007, 28(4): 503-516(in Chinese). doi: 10.3969/j.issn.0254-0053.2007.04.001
    [2]
    WANG X W, WEI K, WANG K Y, et al. Effective thermal conductivity and heat transfer characteristics for a series of lightweight lattice core sandwich panels[J]. Applied Thermal Engineering, 2020, 173: 115205. doi: 10.1016/j.applthermaleng.2020.115205
    [3]
    LU T J, VALDEVIT L, EVANS A G. Active cooling by metallic sandwich structures with periodic cores[J]. Progress in Materials Science, 2005, 50(7): 789-815. doi: 10.1016/j.pmatsci.2005.03.001
    [4]
    RODRIGUES H, FERNANDES P. A material based model for topology optimization of thermoelastic structures[J]. International Journal for Numerical Methods in Engineering, 1995, 38(12): 1951-1965. doi: 10.1002/nme.1620381202
    [5]
    GAO T, ZHANG W H. Topology optimization involving thermo-elastic stress loads[J]. Structural and Multidisciplinary Optimization, 2010, 42(5): 725-738. doi: 10.1007/s00158-010-0527-5
    [6]
    PEDERSEN P, PEDERSEN N L. Strength optimized designs of thermoelastic structures[J]. Structural and Multidisciplinary Optimization, 2010, 42(5): 681-691. doi: 10.1007/s00158-010-0535-5
    [7]
    WU J, SIGMUND O, GROEN J P. Topology optimization of multi-scale structures: A review[J]. Structural and Multidisciplinary Optimization, 2021, 63(3): 1455-1480. doi: 10.1007/s00158-021-02881-8
    [8]
    NOOR A K. Continuum modeling for repetitive lattice structures[J]. Applied Mechanics Reviews, 1988, 41(7): 285-296. doi: 10.1115/1.3151907
    [9]
    BABUŠKA I, GLOWINSKI R, LIONS J L. Homogenization approach in engineering[C]//Computing Methods in Applied Sciences and Engineering. Berlin: Springer, 1976: 137-153.
    [10]
    TANG S F, HUANG F H, LIANG J, et al. Multi-scale analysis for thermo-elasticity properties of composite materials with small periodic configuration[J]. Key Engineering Materials, 2007, 334-335: 25-28. doi: 10.4028/www.scientific.net/KEM.334-335.25
    [11]
    CHENG G D, CAI Y W, XU L. Novel implementation of homogenization method to predict effective properties of periodic materials[J]. Acta Mechanica Sinica, 2013, 29(4): 550-556. doi: 10.1007/s10409-013-0043-0
    [12]
    李鑫. 基于渐近均匀化方法的创新数值实现方法的点阵夹层结构热弹性分析[D]. 大连: 大连理工大学, 2019.

    LI X. Thermoelastic analysis of lattice sandwich structures based on novel implementation of asymptotic homogenization method[D]. Dalian: Dalian University of Technology, 2019 (in Chinese).
    [13]
    SUN C T, VAIDYA R S. Prediction of composite properties from a representative volume element[J]. Composites Science and Technology, 1996, 56(2): 171-179. doi: 10.1016/0266-3538(95)00141-7
    [14]
    张超, 许希武, 严雪. 纺织复合材料细观力学分析的一般性周期性边界条件及其有限元实现[J]. 航空学报, 2013, 34(7): 1636-1645.

    ZHANG C, XU X W, YAN X. General periodic boundary conditions and their application to micromechanical finite element analysis of textile composites[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1636-1645(in Chinese).
    [15]
    WANG L, CAI Y R, LIU D L. Multiscale reliability-based topology optimization methodology for truss-like microstructures with unknown-but-bounded uncertainties[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 339: 358-388. doi: 10.1016/j.cma.2018.05.003
    [16]
    阎军, 程耿东, 刘书田, 等. 周期性点阵类桁架材料等效弹性性能预测及尺度效应[J]. 固体力学学报, 2005, 26(4): 421-428. doi: 10.3969/j.issn.0254-7805.2005.04.007

    YAN J, CHENG G D, LIU S T, et al. Prediction of equivalent elastic properties of truss materials with periodic microstructure and the scale effects[J]. Acta Mechanica Solida Sinica, 2005, 26(4): 421-428(in Chinese). doi: 10.3969/j.issn.0254-7805.2005.04.007
    [17]
    XIA Z H, ZHANG Y F, ELLYIN F. A unified periodical boundary conditions for representative volume elements of composites and applications[J]. International Journal of Solids and Structures, 2003, 40(8): 1907-1921. doi: 10.1016/S0020-7683(03)00024-6
    [18]
    杨素霞. 热弹性点阵结构多尺度并发优化设计[D]. 大连: 大连理工大学, 2014.

    YANG S X. Multi-scale concurrent optimization design of thermoelastic lattice structures[D]. Dalian: Dalian University of Technology, 2014 (in Chinese).
    [19]
    XU B, HUANG X, ZHOU S W, et al. Concurrent topological design of composite thermoelastic macrostructure and microstructure with multi-phase material for maximum stiffness[J]. Composite Structures, 2016, 150: 84-102. doi: 10.1016/j.compstruct.2016.04.038
    [20]
    WATTS S, ARRIGHI W, KUDO J, et al. Simple, accurate surrogate models of the elastic response of three-dimensional open truss micro-architectures with applications to multiscale topology design[J]. Structural and Multidisciplinary Optimization, 2019, 60(5): 1887-1920. doi: 10.1007/s00158-019-02297-5
    [21]
    WANG C, ZHU J H, ZHANG W H, et al. Concurrent topology optimization design of structures and non-uniform parameterized lattice microstructures[J]. Structural and Multidisciplinary Optimization, 2018, 58(1): 35-50. doi: 10.1007/s00158-018-2009-0
    [22]
    WANG C, GU X J, ZHU J H, et al. Concurrent design of hierarchical structures with three-dimensional parameterized lattice microstructures for additive manufacturing[J]. Structural and Multidisciplinary Optimization, 2020, 61(3): 869-894. doi: 10.1007/s00158-019-02408-2
    [23]
    WHITE D A, ARRIGHI W J, KUDO J, et al. Multiscale topology optimization using neural network surrogate models[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 346: 1118-1135. doi: 10.1016/j.cma.2018.09.007
    [24]
    LI S G, WONGSTO A. Unit cells for micromechanical analyses of particle-reinforced composites[J]. Mechanics of Materials, 2004, 36(7): 543-572. doi: 10.1016/S0167-6636(03)00062-0
    [25]
    LIEM R P, MADER C A, MARTINS J R R A. Surrogate models and mixtures of experts in aerodynamic performance prediction for aircraft mission analysis[J]. Aerospace Science and Technology, 2015, 43: 126-151. doi: 10.1016/j.ast.2015.02.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article views(84) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return