Volume 50 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
LIU F Y,DENG T. Influence of dynamic behavior of supercooled large droplets on airfoil icing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):173-186 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0213
Citation: LIU F Y,DENG T. Influence of dynamic behavior of supercooled large droplets on airfoil icing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):173-186 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0213

Influence of dynamic behavior of supercooled large droplets on airfoil icing

doi: 10.13700/j.bh.1001-5965.2022.0213
Funds:  National Natural Science Foundation of China (U1933110); Open Project of Key Laboratory for Icing and Anti-icing (IADL20200305); Scientific Research Project of Tianjin Education Commission (2020KJ036)
More Information
  • Corresponding author: E-mail:t-deng@cauc.edu.cn
  • Received Date: 02 Apr 2022
  • Accepted Date: 06 Jun 2022
  • Available Online: 16 Sep 2022
  • Publish Date: 15 Sep 2022
  • Supercooled large droplets (SLD) represent one of the most hazardous flight conditions. The unique dynamic behavior of large droplets, including deformation, fragmentation, splash, and rebound, poses challenges for accurately assessing SLD icing using traditional icing calculation methods. In this study, the Navier-Stokes method was employed to solve the flow field, the Euler method was used to calculate droplet impact, and the Shallow Water model was utilized to simulate ice accretion. The credibility of the proposed methodology was verified by comparing the results with NASA experimental data. The findings demonstrate that the dynamic behavior of SLD significantly influences icing and ice formation. Specifically, deformation and fragmentation alter the trajectory and impact range of droplets, reducing the droplet impact limit, resulting in a 2.83% and 2.13% decrease in upper and lower icing limits, respectively. Splashing reduces the collection efficiency of droplets near the stagnation point, resulting in an 8.09% reduction in leading-edge ice accretion. Rebound considerably lowers the droplet impact limit, leading to a 30.69% and 20.01% decrease in upper and lower icing limits, respectively. Moreover, the re-entry of secondary droplets into the flow field following rebound increases the upper and lower icing limits by 6.14% and 3.71%, respectively. Furthermore, the aerodynamic performance of the ice-contaminated airfoil significantly deteriorates compared to a clean airfoil. At the same angle of attack, the lift decreases, the drag increases, and the aerodynamic efficiency decreases.

     

  • loading
  • [1]
    FEDERAL AVIATION ADMINISTRATION. Airplane and engine certification requirements in supercooled large drop, mixed phase, and ice crystal icing conditions: RIN 2120–AJ34[S]. Washington, D. C. : Federal Aviation Administration (FAA), DOT, 2010.
    [2]
    VILLEDIEU P, TRONTIN P, GUFFOND D, et al. SLD Lagrangian modeling and capability assessment in the frame of ONERA 3D icing suite[C]//4th AIAA Atmospheric and Space Environments Conference. Reston: AIAA 2012: 3132.
    [3]
    HONSEK R, HABASHI W G, AUBE M S. Eulerian modeling of in-flight icing due to supercooled large droplets[J]. Journal of Aircraft, 2008, 45(4): 1290-1296. doi: 10.2514/1.34541
    [4]
    BOURGAULT Y, HABASHI W G, DOMPIERRE J, et al. A finite element method study of Eulerian droplets impingement models[J]. International Journal for Numerical Methods in Fluids, 2015, 29(4): 429-449.
    [5]
    IULIANO E, MINGIONE G, PETROSINO F, et al. Eulerian modeling of SLD physics towards more realistic aircraft icing simulation[C]// AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2010: 7676.
    [6]
    LEAL L G. Bubbles, drops and particles[J]. International Journal of Multiphase Flow, 1979, 5(3): 229-230. doi: 10.1016/0301-9322(79)90021-1
    [7]
    PILCH M, ERDMAN C A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop[J]. International Journal of Multiphase Flow, 1987, 13(6): 741-757. doi: 10.1016/0301-9322(87)90063-2
    [8]
    HSIANG L P, FAETH G M. Near-limit drop deformation and secondary breakup[J]. Int Multiphase Flow, 1992, 18(5): 635-652. doi: 10.1016/0301-9322(92)90036-G
    [9]
    O'ROURKE P J, AMSDEN A A. The TAB method for numerical calculation of spray droplet breakup: No. 872089[R]. Toronto: SAE Technical Paper, 1987: 148-161.
    [10]
    CLARK M M. Drop breakup in a turbulent flow-I. Conceptual and modeling considerations[J]. Chemical Engineering Science, 1988, 43(3): 671-679. doi: 10.1016/0009-2509(88)87025-8
    [11]
    IBRAHIM E A, YANG H Q, PRZEKWAS A J. Modeling of spray droplets deformation and breakup[J]. Journal of Propulsion and Power, 1993, 9(4): 651-654. doi: 10.2514/3.23672
    [12]
    BAI C, GOSMAN A D. Development of methodology for spray impingement simulation: No. 950283[R]. Detroit: SAE Transactions, 1995: 550-568.
    [13]
    MUNDO C, SOMMERFELD M, TROPEA C. Droplet-wall collisions: Experimental studies of the deformation and breakup process[J]. International Journal of Multiphase Flow, 1995, 21(2): 151-173. doi: 10.1016/0301-9322(94)00069-V
    [14]
    MUNDO C, TROPEA C, SOMMERFELD M. Numerical and experimental investigation of spray characteristics in the vicinity of a rigid wall[J]. Experimental Thermal & Fluid Science, 1997, 15(3): 80-86.
    [15]
    MUNDO C, SOMMERFELD M, TROPEA C. On the modeling of liquid sprays impinging on surfaces[J]. Atomization & Sprays, 1998, 8(6): 625-652.
    [16]
    RUTKOWSKI A, WRIGHT W, POTAPCZUK M. Numerical study of droplet splashing and re-impingement[C]//41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA 2003: 388.
    [17]
    WRIGHT W. Further refinement of the LEWICE SLD model[C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006: 464.
    [18]
    NORDE E, HOSPERS J M, VAN DER WEIDE E, et al. Splashing model for impact of supercooled large droplets on a thin liquid film[C]//52nd Aerospace Sciences Meeting. Reston: AIAA, 2014: 738.
    [19]
    BILODEAU D R, HABASHI W, BARUZZI G, et al. An Eulerian re-impingement model of splashing and bouncing supercooled large droplets[C]// 5th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2013: 3058.
    [20]
    TRUJILLO M F, MATHEWS W S, LEE C F, et al. Modelling and experiment of impingement and atomization of a liquid spray on a wall[J]. International Journal of Engine Research, 2000, 1(1): 87-105. doi: 10.1243/1468087001545281
    [21]
    易贤, 李维浩, 王庄宇等. 过冷大水滴结冰过程中动力学行为的影响因素[C]//第十届全国流体力学学术会议论文摘要集. 杭州: 中国力学学会流体力学专业委员会, 2018, 1: 357.

    Yi Xian, Li Weihao, Wang Zhuangyu et al. Influence factors of dynamic behavior of supercooled large water droplets during icing process [C]//Abstracts of the 10th National Conference on Fluid Mechanics.Hangzhou : Fluid Mechanics Committee of Chinese Society of Mechanics, 2018, 1 : 357(in Chinese).
    [22]
    张辰, 孔维梁, 刘洪. 大粒径过冷水滴结冰模拟破碎模型研究[J]. 空气动力学学报, 2013, 31(2): 144-150.

    ZHANG C, KONG W L, LIU H. Research on simulation crushing model of large particle size supercooled water droplets icing[J]. Journal of Aerodynamics, 2013, 31(2): 144-150(in Chinese).
    [23]
    任靖豪, 王强, 刘宇, 等. 大型商用运输机机翼增升构型水滴撞击特性计算[J]. 空气动力学学报, 2021, 39(1): 52-58.

    REN J H, WANG Q, LIU Y, et al. Calculation of droplet impact characteristics of wing lift configuration for large commercial transport aircraft[J]. Journal of Aerodynamics, 2021, 39(1): 52-58 (in Chinese).
    [24]
    周志宏, 易贤, 桂业伟, 等. 水滴撞击特性的高效计算方法[J]. 空气动力学学报, 2014, 32(5): 712-716. doi: 10.7638/kqdlxxb-2012.0179

    ZHOU Z H, YI X, GUI Y W, et al. Efficient method for calculating droplet impact characteristics[J]. Journal of Aerodynamics, 2014, 32(5): 712-716(in Chinese). doi: 10.7638/kqdlxxb-2012.0179
    [25]
    POTAPCZUK M G, TSAO J C, KING-STEEN L C. Bimodal SLD ice accretion on a NACA 0012 airfoil model[C]//9th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2017: 4478.
    [26]
    SUN F, HAN S, QIAN G, et al. A novel multi-objective optimization model for minute-in-trail strategy based on sector workload restriction[C]//2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS). Piscataway: IEEE Press, 2015: 65-70.
    [27]
    HSIANG L P, FAETH G M. Drop deformation and breakup due to shock wave and steady disturbances[J]. International Journal of Multiphase Flow, 1995, 21(4): 545-560. doi: 10.1016/0301-9322(94)00095-2
    [28]
    OZCER I, SWITCHENKO D, BARUZZI G S, et al. Multi-shot icing simulations with automatic re-meshing: No. 2019-01-1956[R]. Montreal: SAE Technical Paper, 2019: 956-972.
    [29]
    FOULADI H, ALIAGA C N, HABASHI W G. Quasi-unsteady icing simulation of an oscillating airfoil[C]//7th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2015: 3020.
    [30]
    WRIGHT W, CHUNG J. Correlation between geometric similarity of ice shapes and the resulting aerodynamic performance degradation-A preliminary investigation using WIND[C]//38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA , 2000: 97.
    [31]
    BRAGG M, BROEREN A, ADDY H, et al. Airfoil ice-accretion aerodynamic simulation[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007: 85.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(5)

    Article Metrics

    Article views(177) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return