Volume 50 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
YANG Z J,ZHANG C F,ZHAO R J,et al. Thermal deformation analysis and experimental verification of spatial deployable antenna hinge[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):243-249 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0219
Citation: YANG Z J,ZHANG C F,ZHAO R J,et al. Thermal deformation analysis and experimental verification of spatial deployable antenna hinge[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):243-249 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0219

Thermal deformation analysis and experimental verification of spatial deployable antenna hinge

doi: 10.13700/j.bh.1001-5965.2022.0219
Funds:  National Natural Science Foundation of China (51635002)
More Information
  • Corresponding author: E-mail:zhaojunpeng@buaa.edu.cn
  • Received Date: 06 Apr 2022
  • Accepted Date: 14 May 2022
  • Publish Date: 07 Jun 2022
  • The in-orbit thermal deformation analysis of space-deployable antennae is very important because it is one of the major factors impacting the accuracy of these antennae.With the increasing requirements of space exploration missions, the influence of hinge thermal deformation on the pointing accuracy of space-deployable antennae cannot be ignored. In order to calculate the relative angle changes of the main bending direction and side bending direction of the hinges with each temperature change of 10 ℃, a finite element model of the root and arm hinges of a spatial deployable antennae was established. The hinge precision test system was constructed based on the high and low-temperature chamber and electronic theodolite, and the hinge thermal deformation test was carried out. The experimental results show that the root hinge and the interarm hinge exhibit pure structural thermal deformation characteristics in the main and side bending directions. The simulation results are basically consistent with the experimental results, which verify the validity of the finite element model and experimental analysis method. According to the relative Angle changes of the main and side bending directions of the hinge, the effect of thermal deformation on hinge deformation was assessed. The modeling and experimental analysis method can provide a reference for the design, analysis, and optimization of deployable antennas in the same space and the analysis of the factors affecting the accuracy of similar deployable mechanisms.

     

  • loading
  • [1]
    郭宏伟, 邓宗全, 刘荣强. 空间索杆铰接式伸展臂参数设计与精度测量[J]. 光学精密工程, 2010, 18(5): 1105-1111.

    GUO H W, DENG Z Q, LIU R Q. Parameter design and precision measurement of space cable-strut deployable articulated mast[J]. Optics and Precision Engineering, 2010, 18(5): 1105-1111(in Chinese).
    [2]
    胡明, 邓国兵, 陈文华, 等. 空间索杆铰接式伸展臂故障树分析[J]. 空间科学学报, 2012, 32(4): 598-604. doi: 10.11728/cjss2012.04.598

    HU M, DENG G B, CHEN W H, et al. Fault tree analysis of the space cable-strut deployable articulated mast[J]. Chinese Journal of Space Science, 2012, 32(4): 598-604(in Chinese). doi: 10.11728/cjss2012.04.598
    [3]
    高明星. 可重复展收三棱柱伸展臂精度分析与设计研究 [D]. 哈尔滨: 哈尔滨工业大学, 2021: 17-34.

    GAO M X. Precision analysis and design research on the extendable arm of the triangular prism with repeatable expansion and contraction [D]. Harbin: Harbin Institute of Technology, 2021: 17-34(in Chinese).
    [4]
    MEI G J, XIANG B B, WANG N, et al. Correction method of antenna pointing error caused by the main reflector deformation[J]. Chinese Astronomy and Astrophysics, 2021, 45: 236-251. doi: 10.1016/j.chinastron.2021.05.008
    [5]
    SAIAH B D S, ELHABIB B, ALI K, et al. Analysis of the communication links between the AlSat-1b satellite and the ground station: The impact of the auto tracking system on antenna pointing accuracy[J]. International Journal of Satellite Communications and Networking, 2021, 39(5): 486-499. doi: 10.1002/sat.1396
    [6]
    WANG M, WANG P A. Assembling accuracy analysis of antenna array sub-module based on stream-of-inaccuracy theory[J]. Mechanical Engineering and Technology, 2020, 9(6): 628-637. doi: 10.12677/MET.2020.96067
    [7]
    张惠峰. 空间可展天线精度测量、热分析、可靠性分析及间隙影响研究 [D]. 杭州: 浙江大学, 2010: 80-105.

    ZHANG H F. Precision measurement, thermal analysis, reliability analysis and gap effect research of space deployable antenna [D]. Hangzhou: Zhejiang University, 2010: 80-105(in Chinese).
    [8]
    朱敏波, 曹峰云, 刘明治, 等. 星载大型可展开天线太空辐射热变形计算[J]. 西安电子科技大学学报, 2004, 31(1): 28-31.

    ZHU M B, CAO F Y, LIU M Z, et al. The calculation of thermal radiaiton distortion forlarge deployable antennas in satellites[J]. Journal of Xidian University, 2004, 31(1): 28-31(in Chinese).
    [9]
    MAHANEY J, THORNTON E A. Self-shadowing effects on the thermal-structural response of orbiting trusses[J]. Journal of Spacecraft and Rockets, 1987, 24(4): 342-348. doi: 10.2514/3.25922
    [10]
    杨仲. 反射面天线热变形对其方向图的影响[J]. 电子机械工程, 2015, 31(5): 19-22. doi: 10.3969/j.issn.1008-5300.2015.05.005

    YANG Z. Effects of thermal deformation on the far-field pattern of reflector antenna[J]. Electro-Mechanical Engineering, 2015, 31(5): 19-22(in Chinese). doi: 10.3969/j.issn.1008-5300.2015.05.005
    [11]
    武聪魁, 何柏岩, 袁鹏飞. 计及金属铰链的环形可展天线热-结构分析[J]. 工程设计学报, 2020, 27(3): 349-356.

    WU C K, HE B Y, YUAN P F. Thermal-structural analysis of hoop deployable antenna with metal hinges[J]. Chinese Journal of Engineering Design, 2020, 27(3): 349-356(in Chinese).
    [12]
    张惠峰, 关富玲. 可展桁架天线热-结构耦合分析[J]. 浙江大学学报(工学版), 2010, 44(12): 2320-2325. doi: 10.3785/j.issn.1008-973X.2010.12.014

    ZHANG H F, GUAN F L. Thermal-structural coupling analysis of deployable truss antenna[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(12): 2320-2325(in Chinese). doi: 10.3785/j.issn.1008-973X.2010.12.014
    [13]
    刘飞. 反射面天线热变形分析与补偿研究 [D]. 西安: 西安电子科技大学, 2014: 39-51.

    LIU F. Study on thermal deformation analysis and compensation of reflector antenna [D]. Xi’an: Xidian University, 2014: 39-51(in Chinese).
    [14]
    赵军忠, 刘越东, 刘晓勇. 某星载天线热变形对跟踪指向精度的影响仿真分析[J]. 遥测遥控, 2013, 34(5): 1-4. doi: 10.3969/j.issn.2095-1000.2013.05.001

    ZHAO J Z, LIU Y D, LIU X Y. Analysis of influences of thermal distortion on track pointing precision of a kind of satellite antenna[J]. Journal of Telemetry, Tracking and Command, 2013, 34(5): 1-4(inChinese). doi: 10.3969/j.issn.2095-1000.2013.05.001
    [15]
    吴楠. 高精度碳纤维夹层天线面板热变形特性研究 [D]. 南京: 南京航空航天大学, 2020: 22-37.

    WU N. Study on thermal deformation characteristics of high precision carbon fiber sandwich antenna panel [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020: 22-37(in Chinese).
    [16]
    刘国青, 阮剑华, 罗文波, 等. 航天器高稳定结构热变形分析与试验验证方法研究[J]. 航天器工程, 2014, 23(2): 64-70. doi: 10.3969/j.issn.1673-8748.2014.02.011

    LIU G Q, RUAN J H, LUO W B, et al. Research on thermal deformation analysis and test verification method for spacecraft high-stability structure[J]. Spacecraft Engineering, 2014, 23(2): 64-70(in Chinese). doi: 10.3969/j.issn.1673-8748.2014.02.011
    [17]
    LIU T D, WANG C J, WANG B J. Flatness error evaluation of the satellite antenna[J]. International Journal of Future Computer and Communication, 2015, 4(4): 262-265. doi: 10.7763/IJFCC.2015.V4.398
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views(68) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return