Volume 50 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
WANG S S,YIN J B,XING Y M,et al. Topological optimzation of phase change heat sink performance in different gravity fields[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):250-259 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0222
Citation: WANG S S,YIN J B,XING Y M,et al. Topological optimzation of phase change heat sink performance in different gravity fields[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):250-259 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0222

Topological optimzation of phase change heat sink performance in different gravity fields

doi: 10.13700/j.bh.1001-5965.2022.0222
Funds:  Aeronautical Science Foundation of China (20172851018)
More Information
  • Corresponding author: E-mail:xym505@163.com
  • Received Date: 06 Apr 2022
  • Accepted Date: 30 Apr 2022
  • Publish Date: 19 May 2022
  • To enhance the performance of phase change heat sink based heat sinks, the topology optimization of a sorbitol/aluminum phase change heat sink based heat sink is carried out using solid isotropic material with penalization (SIMP) method. Numerical investigations on phase change heat sink with topologically optimized fins (I) and straight fins (II) under the constant gravity (0~20g) and periodic gravity are presented. Dimensionless numbers are used to compare the thermal performance of the two heat sinks. The results show that heat sink I performs better than heat sink II. Under the same gravity environment with 80 ℃ as the goal, the temperature control time of the heat sink I is extended by up to 26.8% on average. Under the microgravity and low gravity, heat conduction dominates the heat sinks, of which the thermal performance is slightly inferior to that under conventional gravity. The natural convection of the liquid PCM driven by supergravity significantly enhances the heat transfer. For heat sink I, the temperature control time of 10g is 8.94% higher than that of conventional gravity, and the periodic gravity has an inhibitory effect at the same Ra*. Research findings provide guidance for detailing the design of aircraft phase change heat sinks .

     

  • loading
  • [1]
    KUMAR A, TIWARI A K, SAID Z. A comprehensive review analysis on advances of evacuated tube solar collector using nanofluids and PCM[J]. Sustainable Energy Technologies and Assessments, 2021, 47: 101417. doi: 10.1016/j.seta.2021.101417
    [2]
    SELVNES H, ALLOUCHE Y, MANESCU R I, et al. Review on cold thermal energy storage applied to refrigeration systems using phase change materials[J]. Thermal Science and Engineering Progress, 2021, 22: 100807. doi: 10.1016/j.tsep.2020.100807
    [3]
    DA CUNHA S R L, DE AGUIAR J L B. Phase change materials and energy efficiency of buildings: A review of knowledge[J]. Journal of Energy Storage, 2020, 27: 101083. doi: 10.1016/j.est.2019.101083
    [4]
    THAKUR A K, PRABAKARAN R, ELKADEEM M, et al. A state of art review and future viewpoint on advance cooling techniques for lithium-ion battery system of electric vehicles[J]. Journal of Energy Storage, 2020, 32: 101771. doi: 10.1016/j.est.2020.101771
    [5]
    LYU J, LIU Z W, WU X H, et al. Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth[J]. ACS Nano, 2019, 13(2): 2236-2245.
    [6]
    YANG T Y, BRAUN P V, MILJKOVIC N, et al. Phase change material heat sink for transient cooling of high-power devices[J]. International Journal of Heat and Mass Transfer, 2021, 170: 121033. doi: 10.1016/j.ijheatmasstransfer.2021.121033
    [7]
    SHAMBERGER P J, BRUNO N M. Review of metallic phase change materials for high heat flux transient thermal management applications[J]. Applied Energy, 2020, 258: 113955. doi: 10.1016/j.apenergy.2019.113955
    [8]
    MATHEW J, KRISHNAN S. A review on transient thermal management of electronic devices[J]. Journal of Electronic Packaging, 2022, 144(1): 010801.
    [9]
    ZHAO L, XING Y M, LIU X. Experimental investigation on the thermal management performance of heat sink using low melting point alloy as phase change material[J]. Renewable Energy, 2020, 146: 1578-1587. doi: 10.1016/j.renene.2019.07.115
    [10]
    何智航. 热管PCM热控装置设计及性能研究[J]. 热科学与技术, 2018, 17(1): 80-86. doi: 10.13738/j.issn.1671-8097.017122

    HE Z H. Design and performance study on heat pipe/PCM composite thermal control device[J]. Journal of Thermal Science and Technology, 2018, 17(1): 80-86(in Chinese). doi: 10.13738/j.issn.1671-8097.017122
    [11]
    宁献文, 李劲东, 王玉莹, 等. 中国航天器新型热控系统构建进展评述[J]. 航空学报, 2019, 40(7): 022874.

    NING X W, LI J D, WANG Y Y, et al. Review on construction of new spacecraft thermal control system in China[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 022874(in Chinese).
    [12]
    GE H S, LI H Y, MEI S F, et al. Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 331-346. doi: 10.1016/j.rser.2013.01.008
    [13]
    赵亮, 邢玉明, 刘鑫, 等. 基于硬脂酸复合相变材料的被动热沉性能[J]. 北京航空航天大学学报, 2019, 45(5): 970-979. doi: 10.13700/j.bh.1001-5965.2018.0513

    ZHAO L, XING Y M, LIU X, et al. Performance of a passive heat sink using stearic acid based composite as phase change material[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 970-979(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0513
    [14]
    WANG S S, XING Y M, HAO Z L, et al. Experimental study on the thermal performance of PCMS based heat sink using higher alcohol/graphite foam[J]. Applied Thermal Engineering, 2021, 198: 117452. doi: 10.1016/j.applthermaleng.2021.117452
    [15]
    BABY R, BALAJI C. Thermal optimization of PCM based pin fin heat sinks: An experimental study[J]. Applied Thermal Engineering, 2013, 54(1): 65-77. doi: 10.1016/j.applthermaleng.2012.10.056
    [16]
    DESAI A N, GUNJAL A, SINGH V K. Numerical investigations of fin efficacy for phase change material (PCM) based thermal control module[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118855. doi: 10.1016/j.ijheatmasstransfer.2019.118855
    [17]
    江洪, 刘敬仪. 3D打印在航空航天领域中的应用初探[J]. 新材料产业, 2019(2): 21-24. doi: 10.19599/j.issn.1008-892x.2019.02.006

    JIANG H, LIU J Y. Application of 3D printing in aerospace field[J]. Advanced Materials Industry, 2019(2): 21-24(in Chinese). doi: 10.19599/j.issn.1008-892x.2019.02.006
    [18]
    DBOUK T. A Review about the engineering design of optimal heat transfer systems using topology optimization[J]. Applied Thermal Engineering, 2017, 112: 841-854. doi: 10.1016/j.applthermaleng.2016.10.134
    [19]
    ALEXANDERSEN J, SIGMUND O, MEYER K E, et al. Design of passive coolers for light-emitting diode lamps using topology optimisation[J]. International Journal of Heat and Mass Transfer, 2018, 122: 138-149. doi: 10.1016/j.ijheatmasstransfer.2018.01.103
    [20]
    LAZAROV B S, SIGMUND O, MEYER K E, et al. Experimental validation of additively manufactured optimized shapes for passive cooling[J]. Applied Energy, 2018, 226: 330-339. doi: 10.1016/j.apenergy.2018.05.106
    [21]
    PIZZOLATO A, SHARMA A, MAUTE K, et al. Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization[J]. Applied Energy, 2017, 208: 210-227. doi: 10.1016/j.apenergy.2017.10.050
    [22]
    PIZZOLATO A, SHARMA A, GE R H, et al. Maximization of performance in multi-tube latent heat storage-optimization of fins topology, effect of materials selection and flow arrangements[J]. Energy, 2020, 203: 114797. doi: 10.1016/j.energy.2019.02.155
    [23]
    游吟, 赵耀, 赵长颖, 等. 相变储热单元内肋片结构的拓扑优化[J]. 科学通报, 2019, 64(11): 1191-1199. doi: 10.1360/N972018-01134

    YOU Y, ZHAO Y, ZHAO C Y, et al. The topology optimization of the fin structure in latent heat storage[J]. Chinese Science Bulletin, 2019, 64(11): 1191-1199(in Chinese). doi: 10.1360/N972018-01134
    [24]
    TIAN Y, LIU X L, XU Q, et al. Bionic topology optimization of fins for rapid latent heat thermal energy storage[J]. Applied Thermal Engineering, 2021, 194: 117104. doi: 10.1016/j.applthermaleng.2021.117104
    [25]
    罗叶刚, 邢玉明, 赵亮, 等. 振动环境对相变组件热控性能影响的实验[J]. 航空动力学报, 2019, 34(3): 592-599. doi: 10.13224/j.cnki.jasp.2019.03.010

    LUO Y G, XING Y M, ZHAO L, et al. Experiment on the thermal management performance of phase change material under vibration environment[J]. Journal of Aerospace Power, 2019, 34(3): 592-599(in Chinese). doi: 10.13224/j.cnki.jasp.2019.03.010
    [26]
    EZQUERRO J M, BELLO A, SALGADO SÁNCHEZ P, et al. The thermocapillary effects in phase change materials in microgravity experiment: Design, preparation and execution of a parabolic flight experiment[J]. Acta Astronautica, 2019, 162: 185-196. doi: 10.1016/j.actaastro.2019.06.004
    [27]
    SALGADO SÁNCHEZ P, EZQUERRO J M, FERNÁNDEZ J, et al. Thermocapillary effects during the melting of phase change materials in microgravity: Heat transport enhancement[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120478. doi: 10.1016/j.ijheatmasstransfer.2020.120478
    [28]
    XU Y, ZHU Z H, LI S, et al. Numerical investigation on melting process of a phase change material under supergravity[J]. Journal of Thermal Science and Engineering Applications, 2021, 13(2): 021014. doi: 10.1115/1.4047524
    [29]
    KANSARA K, SINGH V K, PATEL R, et al. Numerical investigations of phase change material (PCM) based thermal control module (TCM) under the influence of low gravity environment[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120811. doi: 10.1016/j.ijheatmasstransfer.2020.120811
    [30]
    IRADUKUNDA A C, VARGAS A, HUITINK D, et al. Transient thermal performance using phase change material integrated topology optimized heat sinks[J]. Applied Thermal Engineering, 2020, 179: 115723. doi: 10.1016/j.applthermaleng.2020.115723
    [31]
    BOLMATENKOV D N, YAGOFAROV M I, SOKOLOV A A, et al. The heat capacities and fusion thermochemistry of sugar alcohols between 298.15 K and Tm: The study of D-sorbitol, D-mannitol and myo-inositol[J]. Journal of Molecular Liquids, 2021, 330: 115545. doi: 10.1016/j.molliq.2021.115545
    [32]
    HO J Y, SEE Y S, LEONG K C, et al. An experimental investigation of a PCM-based heat sink enhanced with a topology-optimized tree-like structure[J]. Energy Conversion and Management, 2021, 245: 114608. doi: 10.1016/j.enconman.2021.114608
    [33]
    HOU X, XING Y M, HAO Z L. Multi-objective optimization of a composite phase change material-based heat sink under non-uniform discrete heating[J]. Applied Thermal Engineering, 2021, 197: 117435. doi: 10.1016/j.applthermaleng.2021.117435
    [34]
    侯煦, 邢玉明, 郝兆龙, 等. 高碳醇/膨胀石墨复合相变热沉多目标优化[J]. 北京航空航天大学学报, 2021, 47(9): 1866-1873. doi: 10.13700/j.bh.1001-5965.2020.0341

    HOU X, XING Y M, HAO Z L, et al. Multi-objective optimization of a high alcohol/expanded graphite composite PCM based heat sink[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1866-1873(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0341
    [35]
    ZHOU H, ZHANG X Y, ZENG H Z, et al. Lightweight structure of a phase-change thermal controller based on lattice cells manufactured by SLM[J]. Chinese Journal of Aeronautics, 2019, 32(7): 1727-1732. doi: 10.1016/j.cja.2018.08.017
    [36]
    OH Y K, PARK S H, CHO Y I. A study of the effect of ultrasonic vibrations on phase-change heat transfer[J]. International Journal of Heat and Mass Transfer, 2002, 45(23): 4631-4641. doi: 10.1016/S0017-9310(02)00162-X
    [37]
    LAN C W. Effects of axial vibration on vertical zone-melting processing[J]. International Journal of Heat and Mass Transfer, 2000, 43(11): 1987-1997. doi: 10.1016/S0017-9310(99)00264-1
    [38]
    VADASZ J J, MEYER J P, GOVENDER S, et al. Experimental study of vibration effects on heat transfer during solidification of paraffin in a spherical shell[J]. Experimental Heat Transfer, 2016, 29(3): 285-298. doi: 10.1080/08916152.2014.973981
    [39]
    BARDAN G, MOJTABI A. On the Horton-Rogers-Lapwood convective instability with vertical vibration: Onset of convection[J]. Physics of Fluids, 2000, 12(11): 2723-2731. doi: 10.1063/1.1313551
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(68) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return