Volume 50 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
LIU W,JIA S L. Robust traffic flow prediction based on graph contrastive learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):122-133 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0230
Citation: LIU W,JIA S L. Robust traffic flow prediction based on graph contrastive learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):122-133 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0230

Robust traffic flow prediction based on graph contrastive learning

doi: 10.13700/j.bh.1001-5965.2022.0230
More Information
  • Corresponding author: E-mail:wayne@buaa.edu.cn
  • Received Date: 07 Apr 2022
  • Accepted Date: 14 May 2022
  • Publish Date: 31 May 2022
  • Robust traffic flow prediction, as the core technology of Intelligent Transportation Systems, is a long-standing but challenging task. The fact that current models need a lot of training data and are susceptible to noise disturbance is a major factor that is restricting the growth of this subject. In academia, graph contrastive learning can alleviate the data-demanding issue and improve the model’s ability to resist data noise through data augmentation and contrastive learning. Therefore, this paper proposes a Traffic Flow prediction framework that incorporates graph contrast learning (TFGCL) for robust traffic flow prediction. The framework has three contributions: First of all, given the unique spatio-temporal characteristics of traffic flow graph (TFG) data, TFGCL proposes three TFG data augmentation methods from the perspective of time and space. Secondly, in order to learn high-quality representations, this work also suggests a filtering method to shield the model from harsh negative samples with identical semantics. Finally, TFGCL jointly trains the traffic flow prediction task and the graph contrastive learning task. Extensive experiments with 8 baselines on 3 real traffic datasets show that the prediction performance of the TFGCL framework is more robust (an improvement of 6.24% compared to the best baseline), especially in datasets with obvious data missing and long-term traffic flow forecasting tasks.

     

  • loading
  • [1]
    LI Y G, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[EB/OL]. (2018-02-22)[2021-12-20]. https://arxiv.org/abs/1707.01926.pdf.
    [2]
    BAI L, YAO L N, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 17804-17815.
    [3]
    WU Z H, PAN S R, LONG G D, et al. Graph wavenet for deep spatial-temporal graph modeling[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. New York: ACM, 2019: 1907-1913.
    [4]
    TANG X F, YAO H X, SUN Y W, et al. Joint modeling of local and global temporal dynamics for multivariate time series forecasting with missing values[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 5956-5963. doi: 10.1609/aaai.v34i04.6056
    [5]
    李佩钰. 一种基于小波和神经网络的短时交通流量预测[J]. 计算机技术与发展, 2020, 30(1): 135-139. doi: 10.3969/j.issn.1673-629X.2020.01.024

    Li P Y. Short-term traffic flow prediction based on wavelet and neural network[J]. Computer Technology and Development, 2020, 30(1): 135-139(in Chinese). doi: 10.3969/j.issn.1673-629X.2020.01.024
    [6]
    TIAN C Y, CHAN W K V. Spatial-temporal attention wavenet: A deep learning framework for traffic prediction considering spatial-temporal dependencies[J]. IET Intelligent Transport Systems, 2021, 15(4): 549-561. doi: 10.1049/itr2.12044
    [7]
    冯宁, 郭晟楠, 宋超, 等. 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报, 2019, 30(3): 759-769. doi: 10.13328/j.cnki.jos.005697

    FENG N, GUO S N, SONG C, et al. Multi-component spatial-temporal graph convolution networks for traffic flow forecasting[J]. Journal of Software, 2019, 30(3): 759-769(in Chinese). doi: 10.13328/j.cnki.jos.005697
    [8]
    YOU Y N, CHEN T L, SUI Y D, et al. Graph contrastive learning with augmentations[EB/OL]. (2021-04-03)[2021-12-21]. https://arxiv.org/abs/2010.13902.pdf.
    [9]
    XU D K, CHENG W, LUO D S, et al. InfoGCL: Information-aware graph contrastive learning[EB/OL]. (2021-10-28)[2021-12-23]. https://arxiv.org/abs/2110.15438.pdf.
    [10]
    ZHU Y Q, XU Y C, YU F, et al. Graph contrastive learning with adaptive augmentation[C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 2069-2080.
    [11]
    CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]// Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 1597-1607.
    [12]
    ZHANG J B, ZHENG Y, QI D K. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]// Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. New York: ACM, 2017: 1655-1661.
    [13]
    DAGANZO C F, LAVAL J A. Moving bottlenecks: A numerical method that converges in flows[J]. Transportation Research Part B:Methodological, 2005, 39(9): 855-863. doi: 10.1016/j.trb.2004.10.004
    [14]
    田钧方, 朱陈强, 贾宁, 等. 基于轨迹数据的车辆跟驰行为分析与建模综述[J]. 交通运输系统工程与信息, 2021, 21(5): 148-159. doi: 10.16097/j.cnki.1009-6744.2021.05.014

    TIAN J F, ZHU C Q, JIA N, et al. Review of car-following behavior analysis and modeling based on trajectory data[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 148-159 (in Chinese). doi: 10.16097/j.cnki.1009-6744.2021.05.014
    [15]
    SAEED N, LARSEN O I. Application of queuing methodology to analyze congestion: A case study of the Manila International Container Terminal, Philippines[J]. Case Studies on Transport Policy, 2016, 4(2): 143-149. doi: 10.1016/j.cstp.2016.02.001
    [16]
    MO Z B, SHI R Y, DI X A. A physics-informed deep learning paradigm for car-following models[J]. Transportation Research Part C:Emerging Technologies, 2021, 130: 103240. doi: 10.1016/j.trc.2021.103240
    [17]
    JORG B, HAMILTON J D. Time series analysis[J]. Contemporary Sociology, 1995.
    [18]
    ZHAO L, SONG Y J, ZHANG C, et al. T-GCN: A temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858. doi: 10.1109/TITS.2019.2935152
    [19]
    CUI Z Y, HENRICKSON K, KE R M, et al. Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(11): 4883-4894. doi: 10.1109/TITS.2019.2950416
    [20]
    YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]// Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2018: 3634-3640.
    [21]
    GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 922-929. doi: 10.1609/aaai.v33i01.3301922
    [22]
    WU Z H, PAN S R, LONG G D, et al. Connecting the dots: Multivariate time series forecasting with graph neural networks[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 753-763.
    [23]
    YAO H X, TANG X F, WEI H A, et al. Revisiting spatial-temporal similarity: A deep learning framework for traffic prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 5668-5675. doi: 10.1609/aaai.v33i01.33015668
    [24]
    GUO K, HU Y L, SUN Y F, et al. Hierarchical graph convolution network for traffic forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(1): 151-159. doi: 10.1609/aaai.v35i1.16088
    [25]
    YI X, ZHENG Y, ZHANG J, et al. ST-MVL: Filling missing values in Geo-sensory time series data[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York: AAAI Press, 2016: 2704-2710.
    [26]
    ZHANG H Y, CISSE M, DAUPHIN Y N, et al. Mixup: Beyond empirical risk minimization[EB/OL]. (2018-04-27)[2021-12-25]. https://arxiv.org/abs/1710.09412.pdf.
    [27]
    KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22)[2021-12-26]. https://arxiv.org/abs/1609.02907.pdf.
    [28]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010.
    [29]
    SONG C, LIN Y F, GUO S N, et al. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 914-921. doi: 10.1609/aaai.v34i01.5438
    [30]
    CHEN C, PETTY K, SKABARDONIS A, et al. Freeway performance measurement system: Mining loop detector data[J]. Transportation Research Record:Journal of the Transportation Research Board, 2001, 1748(1): 96-102. doi: 10.3141/1748-12
    [31]
    SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30(3): 83-98. doi: 10.1109/MSP.2012.2235192
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views(106) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return