Volume 50 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
YANG R R,ZHANG L,ZHAO J L,et al. Nonlinear variable damping integral sliding mode control for electro-hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):163-172 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0252
Citation: YANG R R,ZHANG L,ZHAO J L,et al. Nonlinear variable damping integral sliding mode control for electro-hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):163-172 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0252

Nonlinear variable damping integral sliding mode control for electro-hydrostatic actuator

doi: 10.13700/j.bh.1001-5965.2022.0252
Funds:  Gansu Provincial Science and Technology Plan Project (20JR10RA175)
More Information
  • Corresponding author: E-mail:yr13236@163.com
  • Received Date: 18 Apr 2022
  • Accepted Date: 10 Jun 2022
  • Publish Date: 14 Jun 2022
  • For electro-hydrostatic actuator (EHA), the traditional sliding mode controller has many defects, such as control signal chattering, difficulty in acceleration information acquirement and controller parameters tuning, which make the controller difficult to be applied in practice. To solve the above problems, the reduced order mathematical model of EHA is obtained reasonably by using singular perturbation theory, which result in avoiding the use of acceleration information. On this basis, a novel nonlinear variable damping integral sliding mode controller (NSMC) is synthesized by employing the reduced order model. NSMC can adaptively adjust the system damping ratio from underdamping to overdamping according to the position control error, and can effectively improve the position step performance. Besides, filter-based uncertainty estimator is designed to estimate and compensate the parameter uncertainties and external disturbances of EHA in real time. Due to the introduction of sliding mode surface integral term and uncertainty estimator, switching function is unnecessary, on the one hand, the free-chattering sliding control can be achieved. On the other hand, the whole dynamic process is determined directly by the dynamic of sliding mode surface, so that sliding mode surface parameters can be tuned directly according to EHA’s control performance index, which greatly simplifies the parameters tuning process. Meanwhile, the stability of the whole closed-loop system and sliding mode surface is proved via Lyapunov stability theory. Finally, by comparing respectively with PI, conventional sliding mode (SMC) and damping variable sliding mode controller (DVSMC), the simulation results indicated that NSMC can effectively improve EHA position tracking performance and enhance the robustness of parameter uncertainty and external disturbance.

     

  • loading
  • [1]
    付永领, 韩旭, 杨荣荣, 等. 电动静液作动器设计方法综述[J]. 北京航空航天大学学报, 2017, 43(10): 1939-1952. doi: 10.13700/j.bh.1001-5965.2017.0195

    FU Y L, HAN X, YANG R R, et al. Review on design method of electro-hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(10): 1939-1952 (in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0195
    [2]
    MARÉ J C, FU J. Review on signal-by-wire and power-by-wire actuation for more electric aircraft[J]. Chinese Journal of Aeronautics, 2017, 30(3): 857-870. doi: 10.1016/j.cja.2017.03.013
    [3]
    ALLE N, HIREMATH S S, MAKARAM S, et al. Review on electro hydrostatic actuator for flight control[J]. International Journal of Fluid Power, 2016, 17(2): 125-145. doi: 10.1080/14399776.2016.1169743
    [4]
    张英臣, 祁晓野. 基于PID和滑模控制的电动静液作动器的研究[J]. 机床与液压, 2017, 45(21): 122-126.

    ZHANG Y C, QI X Y. Study of electro-hydraulic actuator based on PID and sliding mode control[J]. Machine Tool & Hydraulics, 2017, 45(21): 122-126 (in Chinese).
    [5]
    EL SAYED M A, HABIBI S. Inner-loop control for electro-hydraulic actuation systems[J]. Journal of Dynamic Systems, Measurement, and Control, 2012, 134(1): 014501. doi: 10.1115/1.4001338
    [6]
    AHN K K, NAM D N C, JIN M L. Adaptive backstepping control of an electrohydraulic actuator[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(3): 987-995. doi: 10.1109/TMECH.2013.2265312
    [7]
    SUN W C, GAO H J, YAO B. Adaptive robust vibration control of full-car active suspensions with electrohydraulic actuators[J]. IEEE Transactions on Control Systems Technology, 2013, 21(6): 2417-2422. doi: 10.1109/TCST.2012.2237174
    [8]
    GE Y W, YANG X W, DENG W X, et al. RISE-based composite adaptive control of electro-hydrostatic actuator with asymptotic stability[J]. Machines, 2021, 9(9): 181. doi: 10.3390/machines9090181
    [9]
    WANG M K, WANG Y, FU Y L, et al. Experimental investigation of an electro-hydrostatic actuator based on the novel active compensation method[J]. IEEE Access, 2020, 8: 170635-170649. doi: 10.1109/ACCESS.2020.3021104
    [10]
    ZHANG H, LIU X T, WANG J M, et al. Robust H sliding mode control with pole placement for a fluid power electrohydraulic actuator (EHA) system[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(5-8): 1095-1104. doi: 10.1007/s00170-014-5910-8
    [11]
    郭新平, 汪成文, 刘华, 等. 基于扩张状态观测器的泵控电液伺服系统滑模控制[J]. 北京航空航天大学学报, 2020, 46(6): 1159-1168. doi: 10.13700/j.bh.1001-5965.2019.0418

    GUO X P, WANG C W, LIU H, et al. Extended-state-observer based sliding mode control for pump-controlled electro-hydraulic servo system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1159-1168 (in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0418
    [12]
    李小虎, 王孙安, 张育林, 等. 基于反馈变结构控制电动静液作动器的研究[J]. 机床与液压, 2008, 36(12): 71-74.

    LI X H, WANG S A, ZHANG Y L, et al. Study on sliding mode control based on feedback for electro-hydrostatic actuator[J]. Machine Tool & Hydraulics, 2008, 36(12): 71-74 (in Chinese).
    [13]
    LIN Y, SHI Y, BURTON R. Modeling and robust discrete-time sliding-mode control design for a fluid power electrohydraulic actuator (EHA) system[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1): 1-10. doi: 10.1109/TMECH.2011.2160959
    [14]
    WANG S, BURTON R, HABIBI S. Sliding mode controller and filter applied to an electrohydraulic actuator system[J]. Journal of Dynamic Systems, Measurement, and Control, 2011, 133(2): 024504. doi: 10.1115/1.4003206
    [15]
    WANG S, HABIBI S, BURTON R, et al. Sliding mode control for a model of an electrohydraulic actuator system with discontinuous nonlinear friction[C]//2006 American Control Conference. Piscataway: IEEE Press, 2006, 1-2: 780.
    [16]
    ALEMU A E, FU Y L. Sliding mode control of electro-hydrostatic actuator based on extended state observer[C]//2017 29th Chinese Control and Decision Conference (CCDC). Piscataway: IEEE Press, 2017: 758-763.
    [17]
    LEE L M, PARK P H , KIM K J S. Design and experimental evaluation of a robust position controller for an electro- hydrostatic actuator using adaptive anti-windup sliding mode scheme[J]. The Scientific World Journal, 2013, 2013: 590708.
    [18]
    张振, 李海军, 诸德放. EHA反馈线性化最优滑模面双模糊滑模控制[J]. 北京航空航天大学学报, 2016, 42(7): 1398-1405. doi: 10.13700/j.bh.1001-5965.2015.0454

    ZHANG Z, LI H J, ZHU D F. Double fuzzy sliding mode control for EHA based on feedback linearization optimal sliding surface[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7): 1398-1405 (in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0454
    [19]
    YANG R R, FU Y L, ZHANG L, et al. A novel sliding mode control framework for electrohydrostatic position actuation system[J]. Mathematical Problems in Engineering, 2018, 2018: 7159891.
    [20]
    杨荣荣. 基于新型电液泵的电静液作动系统控制策略研究[D]. 北京: 北京航空航天大学, 2019: 76-77.

    YANG R R. Research on control strategy for electro-hydrostatic actuation system based on a novel integrated electrohydraulic pump[D]. Beijing: Beijing University of Aeronautics and Astronautics, 2019: 76-77 (in Chinese).
    [21]
    王明康, 付永领, 赵江澳, 等. 电动静液作动器的新型变阻尼级联滑模控制[J]. 北京航空航天大学学报, 2021, 47(8): 1612-1618. doi: 10.13700/j.bh.1001-5965.2020.0252

    WANG M K, FU Y L, ZHAO J A, et al. Novel damping-variable sliding mode cascade control for electro-hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1612-1618 (in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0252
    [22]
    WANG M K, WANG Y, YANG R R, et al. A sliding mode control strategy for an ElectroHydrostatic actuator with damping variable sliding surface[J]. Actuators, 2020, 10(1): 3. doi: 10.3390/act10010003
    [23]
    付永领, 李祝锋, 薛晶, 等. 一种带转速反馈的永磁轴向柱塞式电液泵: CN203423578U[P]. 2015-08-26.

    FU Y L, LI Z F, XUE J, et al. Permanent magnet radial plunger type electro-hydraulic pump with rotating speed feedback: CN203423578U[P]. 2015-08-26 (in Chinese).
    [24]
    PONOMAREV P, POLIKARPOVA M, HEINIKAINEN O, et al. Design of integrated electro-hydraulic power unit for hybrid mobile working machines[C]//Proceedings of the 14th European Conference on Power Electronics and Applications (EPE2011). Piscataway: IEEE Press, 2011: 1-10.
    [25]
    KHALIL H K. Nonlinear systems[M]. 3rded. Upper Saddle River, NJ: Prentice Hall, 2002: 423-430.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views(91) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return