Volume 50 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
CHEN Y L,DONG S J,SUN S Z,et al. Improved YOLOv5s low-light underwater biological target detection algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):499-507 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0322
Citation: CHEN Y L,DONG S J,SUN S Z,et al. Improved YOLOv5s low-light underwater biological target detection algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):499-507 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0322

Improved YOLOv5s low-light underwater biological target detection algorithm

doi: 10.13700/j.bh.1001-5965.2022.0322
Funds:  National Natural Science Foundation of China (51775072); Chongqing Science and Technology Innovation Leading Talents Support Program (CSTCCCXLJRC201920); Chongqing University Innovation Research Group (CXQT20019);Technology Innovation and Application Demonstration Project of Chongqing Beibei Science and Technology Bureau (2020-6); Chongqing Key Laboratory of Urban Rail Transit System Integration and Control Open Fund (CKLURTSIC-KFKT-202007)
More Information
  • Corresponding author: E-mail:dongshaojiang100@163.com
  • Received Date: 06 May 2022
  • Accepted Date: 01 Jul 2022
  • Publish Date: 14 Jul 2022
  • A real-time detection method of low-light underwater biological target based on improved YOLOv5s, known as YOLOv5s-underwater, was proposed to address the issue of low biometric recognition accuracy caused by the significant attenuation of light in water, the complex image environment, and the movement of shooting equipment in the process of underwater optical image target detection. Firstly, to solve the problem of weak underwater light attenuation, the contrast-limited adaptive histogram equalization (CLAHE) algorithm is introduced to preprocess the input image, which solves the problems of color distortion and image roughness. Secondly, the spatial pyramid pooling fast (SPPF) module is proposed to solve the problems of low discrimination and serious feature loss of underwater objects in the complex low-light underwater image environment. Thirdly, a Swin-Transformer module based on the spin window is proposed to improve the generalization ability of the model. Finally, the network model structure is modified to improve the detection ability of small underwater targets. Simulation and experiment prove that the proposed method improves the detection accuracy by 30.7% compared with YOLOv5s. Results from experiments support the method’s efficacy.

     

  • loading
  • [1]
    李宝奇, 黄海宁, 刘纪元, 等. 基于改进SSD的水下光学图像感兴趣目标检测算法研究[J]. 电子与信息学报, 2022, 44(10): 3372-3378. doi: 10.11999/JEIT210761

    LI B Q, HUANG H N, LIU J Y, et al. Underwater optical image interested object detection model based on improved SSD[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3372-3378 (in Chinese). doi: 10.11999/JEIT210761
    [2]
    金盛龙, 迟骋, 李宇, 等. 稀疏驱动自适应线谱增强的水下目标谱熵检测[J]. 声学学报, 2021, 46(6): 1059-1069. doi: 10.15949/j.cnki.0371-0025.2021.06.025

    JIN S L, CHI C, LI Y, et al. A supervised learning detection method with pre-processing of sparsity-based adaptive line enhancer[J]. Acta Acustica, 2021, 46(6): 1059-1069(in Chinese). doi: 10.15949/j.cnki.0371-0025.2021.06.025
    [3]
    徐凤强, 董鹏, 王辉兵, 等. 基于水下机器人的海产品智能检测与自主抓取系统[J]. 北京航空航天大学学报, 2019, 45(12): 2393-2402.

    XU F Q, DONG P, WANG H B, et al. Intelligent detection and autonomous capture system of seafood based on underwater robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2393-2402(in Chinese).
    [4]
    ZHOU J C, ZHANG D H, ZHANG W S. Classical and state-of-the-art approaches for underwater image defogging: A comprehensive survey[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(12): 1745-1769.
    [5]
    董绍江, 刘伟, 蔡巍巍, 等. 基于分层精简双线性注意力网络的鱼类识别[J]. 计算机工程与应用, 2022, 58(5): 186-192.

    DONG S J, LIU W, CAI W W, et al. Fish recognition based on hierarchical compact bilinear attention network[J]. Computer Engineering and Applications, 2022, 58(5): 186-192(in Chinese).
    [6]
    牛浩青, 欧鸥, 饶姗姗, 等. 改进YOLOv3的遥感影像小目标检测方法[J]. 计算机工程与应用, 2022, 58(13): 241-248.

    NIU H Q, OU O, RAO S S, et al. Small object detection method based on improved YOLOv3 in remote sensing image[J]. Computer Engineering and Applications, 2022, 58(13): 241-248(in Chinese).
    [7]
    WANG X H, ZHU Y G, LI D Y, et al. Underwater target detection based on reinforcement learning and ant colony optimization[J]. Journal of Ocean University of China, 2022, 21(2): 323-330. doi: 10.1007/s11802-022-4887-4
    [8]
    OKSUZ K, CAM B C, KALKAN S, et al. Imbalance problems in object detection: A review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3388-3415. doi: 10.1109/TPAMI.2020.2981890
    [9]
    周清松, 董绍江, 罗家元, 等. 改进YOLOv3的桥梁表观病害检测识别[J]. 重庆大学学报, 2022, 45(6): 121-130.

    ZHOU Q S, DONG S J, LUO J Y, et al. Bridge apparent disease detection based on improved YOLOv3[J]. Journal of Chongqing University, 2022, 45(6): 121-130(in Chinese).
    [10]
    REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. (2018-04-06) [2022-05-01]. https://arxiv.org/abs/1804.02767.
    [11]
    AHMAD T, CHEN X N, SAQLAIN A S, et al. EDF-SSD: An improved feature fused SSD for object detection[C]//Proceedings of the IEEE 6th International Conference on Cloud Computing and Big Data Analytics. Piscataway: IEEE Press, 2021: 469-473.
    [12]
    ZHANG Z D, TAN M L, LAN Z C, et al. CDNet: A real-time and robust crosswalk detection network on Jetson nano based on YOLOv5[J]. Neural Computing and Applications, 2022, 34(13): 10719-10730.
    [13]
    WALIA I S, KUMAR D, SHARMA K, et al. An integrated approach for monitoring social distancing and face mask detection using stacked ResNet-50 and YOLOv5[J]. Electronics, 2021, 10(23): 2996. doi: 10.3390/electronics10232996
    [14]
    LIU Z, LIN Y, CAO Y, et al. Swin Transformer: Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2022: 9992-10002.
    [15]
    LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8759-8768.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views(164) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return