Volume 50 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
GONG K C,ZHOU M L,TANG D M. Region-aware real-time portrait super resolution reconstruction network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):588-595 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0394
Citation: GONG K C,ZHOU M L,TANG D M. Region-aware real-time portrait super resolution reconstruction network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):588-595 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0394

Region-aware real-time portrait super resolution reconstruction network

doi: 10.13700/j.bh.1001-5965.2022.0394
Funds:  National Natural Science Foundation of China (61873217); Sichuan Science and Technology Program (2021JDRC0063); The Fundamental Research Funds for the Central Universities, Southwest Minzu University (2021118)
More Information
  • Corresponding author: E-mail:tdm_2010@swun.edu.cn
  • Received Date: 20 May 2022
  • Accepted Date: 02 Jul 2022
  • Available Online: 23 Sep 2022
  • Publish Date: 20 Sep 2022
  • Conventional techniques typically process the entire image uniformly, which leads to low efficiency in the field of portrait super-resolution reconstruction.To reduce the inference latency of the model, this research proposes a real-time super-resolution reconstruction model RASR. The model first uses gating unit to process the low-resolution images and identify the edge of the portrait. Then, a partition reconstruction strategy is adopted, and sub-models of different sizes are used to reconstruct the areas containing or not containing the portrait edge, respectively. The experimental results show that the RASR model is able to reconstruct high-resolution portrait images more efficiently by reducing the inference latency of the RASR model by 88% in a 4-foldsampling reconstruction scene compared to the existing methods.

     

  • loading
  • [1]
    KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(6): 1153-1160. doi: 10.1109/TASSP.1981.1163711
    [2]
    KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1637-1645.
    [3]
    KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 1646-1654.
    [4]
    LIU F, YU Q, CHEN L, et al. Aerial image super-resolution based on deep recursive dense network for disaster area surveillance[J]. Personal Ubiquitous Computing, 2022, 26: 1205-1214.
    [5]
    DONG C, LOY C C, HE K, et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2014: 184-199.
    [6]
    LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 136-144.
    [7]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [8]
    TONG T, LI G, LIU X, et al. Image super-resolution using dense skip connections[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 4799-4807.
    [9]
    SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 1-9.
    [10]
    HAN K, WANG Y, TIAN Q, et al. GhostNet: More features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 1580-1589.
    [11]
    HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141.
    [12]
    WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7794-7803.
    [13]
    RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, 2015: 234-241.
    [14]
    YU C, WANG J, PENG C, et al. BiSeNet: Bilateral segmentation network for real-time semantic segmentation[C//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018: 334-349.
    [15]
    FAN M, LAI S, HUANG J, et al. Rethinking bisenet for real-time semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 9716-9725.
    [16]
    HE Z, LIU K, LIU Z, et al. A lightweight multi-scale feature integration network for real-time single image super-resolution[J]. Journal of Real-Time Image Processing, 2021, 18(4): 1221-1234. doi: 10.1007/s11554-021-01142-7
    [17]
    ACUNA D, LING H, KAR A, et al. Efficient interactive annotation of segmentation datasets with Polygon-RNN++[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 859-868.
    [18]
    LING H, GAO J, KAR A, et al. Fast interactive object annotation with Curve-GCN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 5257-5266.
    [19]
    BELKIN M, HSU D, MA S, et al. Reconciling modern machine-learning practice and the classical bias-variance trade-off[J]. Proceedings of the National Academy of Sciences, 2019, 116(32): 15849-15854. doi: 10.1073/pnas.1903070116
    [20]
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. doi: 10.1109/5.726791
    [21]
    DONG C, LOY C C, TANG X. Accelerating the super-resolution convolutional neural network[C]//Proceedings of the European Conference on Computer Vision. Berlin:Springer, 2016: 391-407.
    [22]
    LIU X, LI Y, FROMM J, et al. SplitSR: An end-to-end approach to super-resolution on mobile devices[C]//Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies.New York:ACM, 2021, 5(1): 1-20.
    [23]
    SHI W, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016: 1874-1883.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views(653) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return