Volume 50 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
ZUO B X,ZHOU B,DAI M L. Measurement of three-dimensional temperature and soot volume fraction for RP-3 jet fuel flame[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1273-1281 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0415
Citation: ZUO B X,ZHOU B,DAI M L. Measurement of three-dimensional temperature and soot volume fraction for RP-3 jet fuel flame[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1273-1281 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0415

Measurement of three-dimensional temperature and soot volume fraction for RP-3 jet fuel flame

doi: 10.13700/j.bh.1001-5965.2022.0415
Funds:  National Key R&D Program of China (2017YFB0603204); National Natural Science Foundation of China (50976024,50906013)
More Information
  • Corresponding author: E-mail:zhoubinde@seu.edu.cn
  • Received Date: 26 May 2022
  • Accepted Date: 22 Jul 2022
  • Available Online: 28 Jul 2022
  • Publish Date: 28 Jul 2022
  • RP-3 jet fuel is one of the frequently utilized fuels in aviation engines. Temperature and soot volume fraction distribution of flame are the vital data support for fuel optimization, which can directly indicate the state of combustion. The precision of the reconstruction path in three-dimensional measurement was influenced by camera position and attitude. A novel method that combines the radiation imaging system and the camera stereo calibration technology was proposed to address this problem. According to the results of numerical simulation, the method could not only guarantee the accuracy of measurement results, but also provide high spatial resolution. The experimental measurement of RP-3 and air premixed flame were carried out. The three-dimensional temperature and soot volume fraction distribution were also obtained by the calibrated six-camera system. The spatial resolution was $1 \;{\mathrm{mm}}\times $$ 1 \;{\mathrm{mm}}\times1 \;{\mathrm{mm}} $, and the uncertainty of temperature difference between reconstructed and thermocouple measured temperature was 0.58 K, demonstrating the accuracy of the method.

     

  • loading
  • [1]
    贾洲侠, 徐国强, 邓宏武, 等. 亚临界压力下航空煤油RP-3动力黏度测量[J]. 北京航空航天大学学报, 2014, 40(7): 934-938.

    JIA Z X, XU G Q, DENG H W, et al. Dynamic viscosity measurements of aviation hydrocarbon fuel RP-3 at sub-critical pressures[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(7): 934-938(in Chinese).
    [2]
    GRAUER S J, UNTERBERGER A, RITTLER A, et al. Instantaneous 3D flame imaging by background-oriented schlieren tomography [J]. Combustion and Flame, 2018, 196: 284-299.
    [3]
    YAN W J, LOU C. Two-dimensional distributions of temperature and soot volume fraction inversed from visible flame images[J]. Experimental Thermal and Fluid Science, 2013, 50: 229-233. doi: 10.1016/j.expthermflusci.2013.05.013
    [4]
    YAN W J, CHEN D M, YANG Z M, et al. Measurement of soot volume fraction and temperature for oxygen-enriched ethylene combustion based on flame image processing[J]. Energies, 2017, 10(6): 750. doi: 10.3390/en10060750
    [5]
    WORTH N A, DAWSON J R. Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames[J]. Measurement Science and Technology, 2013, 24(2): 024013. doi: 10.1088/0957-0233/24/2/024013
    [6]
    LU G, YAN Y, CORNWELL S, et al. Impact of co-firing coal and biomass on flame characteristics and stability[J]. Fuel, 2008, 87(7): 1133-1140. doi: 10.1016/j.fuel.2007.07.005
    [7]
    HOSSAIN M M, LU G, YAN Y. Optical fiber imaging based tomographic reconstruction of burner flames[J]. IEEE Transaction on Instrumentation and Measurement, 2012, 61(5): 1417-1425. doi: 10.1109/TIM.2012.2186477
    [8]
    谢正超, 王飞, 张海丹, 等. 基于可见光-近红外多光谱图像的火焰场参数重建[J]. 燃烧科学与技术, 2016, 22(6): 552-557.

    XIE Z C, WANG F, ZHANG H D, et al. Simultaneous reconstruction of three dimensional field parameters based on the visible and near-infrared multi-spectral flame images[J]. Journal of Combustion Science and Technology, 2016, 22(6): 552-557(in Chinese).
    [9]
    LIU H W, ZHENG S, ZHOU H C. Measurement of soot temperature and volume fraction of axisymmetric ethylene laminar flames using hyperspectral tomography[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(2): 315-324. doi: 10.1109/TIM.2016.2631798
    [10]
    LI M J, SUN K, HE Z. Integrated research of a multi-wavelength method in anisotropic scattering flame on soot temperature and radiative coefficient reconstruction[J]. Applied Optics, 2018, 57(21): 5899-5913.
    [11]
    张海丹. 基于高光谱成像系统的火焰三维温度场和烟黑浓度场重建研究[D]. 杭州: 浙江大学, 2016: 22-23.

    ZHANG H D. Three dimensional reconstruction of temperature and soot volume fraction distribution in flames based on hyperspectral imaging system[D]. Hangzhou: Zhejiang University, 2016: 22-23(in Chinese).
    [12]
    SUN J, HOSSAIN M M, XU C L, et al. Investigation of flame radiation sampling and temperature measurement through light field camera[J]. International Journal of Heat and Mass Transfer, 2018, 121: 1281-1296. doi: 10.1016/j.ijheatmasstransfer.2018.01.083
    [13]
    HUANG X, QI H, ZHANG X L, et al. Application of landweber method for three-dimensional temperature field reconstruction based on the light-field imaging technique[J]. Journal of Heat Transfer, 2018, 140(8): 082701. doi: 10.1115/1.4039305
    [14]
    史景文, 齐宏, 孙安泰, 等. 光场相机的标定误差对三维温度场重建的影响[J]. 燃烧科学与技术, 2022, 28(2): 220-228.

    SHI J W, QI H, SUN A T, et al. Effect of calibration error of plenoptic camera on three-dimensional temperature field reconstruction[J]. Journal of Combustion Science and Technology, 2022, 28(2): 220-228(in Chinese).
    [15]
    KAHMEN O, ROFALLSKI R, LUHMANN T. Impact of stereo camera calibration to object accuracy in multimedia photogrammetry[J]. Remote Sensing, 2020, 12(12): 2057. doi: 10.3390/rs12122057
    [16]
    USAMENTIAGA R, GARCIA D F. Multi-camera calibration for accurate geometric measurements in industrial environments[J]. Measurement, 2019, 134: 345-358. doi: 10.1016/j.measurement.2018.10.087
    [17]
    MCENALLY C S, KÖYLÜ Ü Ö, PFEFFERLE L D, et al. Soot volume fraction and temperature measurements in laminar nonpremixed flames using thermocouples[J]. Combustion and Flame, 1997, 109(4): 701-720. doi: 10.1016/S0010-2180(97)00054-0
    [18]
    FURUKAWA Y, PONCE J. Accurate camera calibration from multi-view stereo and bundle adjustment[J]. International Journal of Computer Vision, 2009, 84(3): 257-268. doi: 10.1007/s11263-009-0232-2
    [19]
    GENOVESE K, CHI Y X, PAN B. Stereo-camera calibration for large-scale DIC measurements with active phase targets and planar mirrors[J]. Optics Express, 2019, 27(6): 9040. doi: 10.1364/OE.27.009040
    [20]
    SUN M S, GAN Z W, YANG Y Y. Numerical and experimental investigation of soot precursor and primary particle size of aviation fuel (RP-3) and n-dodecane in laminar flame[J]. Journal of the Energy Institute, 2021, 94: 49-62. doi: 10.1016/j.joei.2020.10.009
    [21]
    ABDALLA A O G, YING Y Y, JIANG B, et al. Comparative study on characteristics of soot from n-decane and RP-3 kerosene normal/inverse diffusion flames[J]. Journal of the Energy Institute, 2020, 93(1): 62-75. doi: 10.1016/j.joei.2019.04.008
    [22]
    WANG X R, DAI M L, YAN J, et al. Experimental investigation on the evaporation and micro-explosion mechanism of jatropha vegetable oil (JVO) droplets[J]. Fuel, 2019, 258: 115941. doi: 10.1016/j.fuel.2019.115941
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views(195) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return