Volume 50 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
LIU D J,TIAN G,LI Y L,et al. Research on pre-corrosion fatigue properties of 2195 Al-Li alloys in 30% HNO3[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1129-1137 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0445
Citation: LIU D J,TIAN G,LI Y L,et al. Research on pre-corrosion fatigue properties of 2195 Al-Li alloys in 30% HNO3[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1129-1137 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0445

Research on pre-corrosion fatigue properties of 2195 Al-Li alloys in 30% HNO3

doi: 10.13700/j.bh.1001-5965.2022.0445
Funds:  National Natural Science Foundation of China (52272446,52075541); Shaanxi Natural Science Foundation (2022JM-243)
More Information
  • Corresponding author: E-mail:tiangan_2012@163.com
  • Received Date: 31 May 2022
  • Accepted Date: 01 Jul 2022
  • Available Online: 29 Apr 2024
  • Publish Date: 19 Jul 2022
  • To simulate the material and application characteristics of liquid-missile propellant tanks, fatigue tests were carried out after pre-corrosion in 30% HNO3 for different hours. Effects of pre-corrosion on fatigue properties were investigated by scanning electron microscopy (SEM), transmission electron microscope (TEM), and electron backscatter detector (EBSD) methods. The results show that the surface morphology after corrosion is mainly composed of intergranular corrosion and pitting. Stripped corrosion chains are produced along the rolling direction, which are related with corroded long grain boundaries and intermetallic particles. The fatigue limit values of pre-corroded specimens are lower than those of the uncorroded specimens. The fatigue limit of 16 h corroded specimens is the highest, while the limit of 24 h corroded specimens declines to zero. The fatigue cycles under median stress amplitudes of 210 MPa, 280 MPa and 330 MPa, higher than those of uncorroded specimens, and the increase of 16 h corroded specimens is the most obvious. The enhancement of fatigue cycles attributes to the elimination of microcracks, pores and the improvement of surface roughness through pre-corrosion, which reduces the stress concentration and retards the crack initiation.

     

  • loading
  • [1]
    XU Y, WANG X J, YAN Z T, et al. Corrosion properties of light-weight and high-strength 2195 Al-Li alloy[J]. Chinese Journal of Aeronautics, 2011, 24(5): 681-686. doi: 10.1016/S1000-9361(11)60080-0
    [2]
    LIN Y, ZHENG Z Q, LI S C, et al. Microstructures and properties of 2099 Al-Li alloy[J]. Materials Characterization, 2013, 84: 88-99. doi: 10.1016/j.matchar.2013.07.015
    [3]
    GOEBEL J, GHIDINI T, GRAHAM A J. Stress-corrosion cracking characterisation of the advanced aerospace Al–Li 2099-T86 alloy[J]. Materials Science and Engineering:A, 2016, 673: 16-23. doi: 10.1016/j.msea.2016.07.013
    [4]
    ABD EL-ATY A, XU Y, GUO X Z, et al. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review[J]. Journal of Advanced Research, 2018, 10: 49-67. doi: 10.1016/j.jare.2017.12.004
    [5]
    WANG X H, WANG J H, YUE X, et al. Effect of aging treatment on the exfoliation corrosion and stress corrosion cracking behaviors of 2195 Al–Li alloy[J]. Materials & Design, 2015, 67: 596-605.
    [6]
    CHARALAMPIDOU C, DIETZEL W, ZHELUDKEVICH M, et al. Corrosion-induced mechanical properties degradation of Al-Cu-Li (2198-T351) aluminum alloy and the role of side-surface cracks[J]. Corrosion Science, 2021, 183: 109330. doi: 10.1016/j.corsci.2021.109330
    [7]
    MA Y, ZHOU X, HUANG W, et al. Localized corrosion in AA2099-T83 aluminum–lithium alloy: The role of intermetallic particles[J]. Materials Chemistry and Physics, 2015, 161: 201-210. doi: 10.1016/j.matchemphys.2015.05.037
    [8]
    DE SOUSA ARAUJO J V, MILAGRE M X, FERREIRA R O, et al. Exfoliation and intergranular corrosion resistance of the 2198 Al–Cu–Li alloy with different thermomechanical treatments[J]. Materials and Corrosion, 2020, 71(12): 1957-1970. doi: 10.1002/maco.202011839
    [9]
    LIU J H, ZHAO K, YU M, et al. Effect of surface abrasion on pitting corrosion of Al-Li alloy[J]. Corrosion Science, 2018, 138: 75-84. doi: 10.1016/j.corsci.2018.04.010
    [10]
    LEI X W, SAATCHI A, GHANBARI E, et al. Studies on pitting corrosion of Al-Cu-Li alloys part I: Effect of Li addition by microstructural, electrochemical, In-situ, and pit depth analysis[J]. Materials, 2019, 12(10): 1600.
    [11]
    ZHONG J, ZHONG S, ZHENG Z Q, et al. Fatigue crack initiation and early propagation behavior of 2A97 Al–Li alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(2): 303-309. doi: 10.1016/S1003-6326(14)63061-2
    [12]
    薛喜丽, 郑子樵, 胡芳, 等. 时效制度对2A97铝锂合金疲劳裂纹扩展速率的影响[J]. 稀有金属材料与工程, 2016, 45(12): 3319-3324.

    XUE X L, ZHENG Z Q, HU F, et al. Effect of aging conditions on the fatigue crack propagation rate of 2A97 aluminum-lithium alloy[J]. Rare Metal Materials and Engineering, 2016, 45(12): 3319-3324 (in Chinese).
    [13]
    许罗鹏, 曹小建, 李久楷, 等. 铝锂合金2198-T8高周疲劳性能及其裂纹萌生机理[J]. 稀有金属材料与工程, 2017, 46(1): 83-89.

    XU L P, CAO X J, LI J K, et al. High cycle fatigue properties and crack initiation mechanisms of Al-Li 2198-T8 alloy[J]. Rare Metal Materials and Engineering, 2017, 46(1): 83-89 (in Chinese).
    [14]
    范雪松, 郑子樵, 张龙, 等. 2397合金高周疲劳性能及裂纹萌生扩展行为[J]. 稀有金属材料与工程, 2017, 46(5): 1327-1333.

    FAN X S, ZHENG Z Q, ZHANG L, et al. High-cycle fatigue properties and crack initiation and propagation behavior of 2397 alloy[J]. Rare Metal Materials and Engineering, 2017, 46(5): 1327-1333 (in Chinese).
    [15]
    TIAN G, JIN G F, ZHANG W, et al. Investigation on electrochemical corrosion characteristics of 2A14 aluminum alloy in nitric acid[J]. Surface Review and Letters, 2017, 24(1): 1850016.
    [16]
    LIU D J, TIAN G, JIN G F, et al. Characterization of localized corrosion pathways in 2195-T8 Al–Li alloys exposed to acidic solution[J]. Defence Technology, 2023, 25: 152-165. doi: 10.1016/j.dt.2022.05.004
    [17]
    刘涛, 高怡斐, 董莉, 等. 金属材料疲劳试验轴向应变控制方法: GB/T 26077—2010[S]. 北京: 中国国家标准化管理委员会, 2011: 5-6.

    LIU T, GAO Y F, DONG L, et al. Metallic materials-fatigue testing-axial strain-controlled method: GB/T 26077—2010[S]. Beijing:Standardization Administration of China, 2011: 5-6.
    [18]
    高舜之, 何荣年. 金属轴向疲劳试验方法: GB 3075-82[S]. 北京: 冶金部钢铁研究总院, 1982: 7-9.

    GAO S Z, HE R N. Method of axial force controlled fatigue testing of metals: GB 3075-82[S]. Beijing:Iron and Steel Research Institute of the Ministry of Metallurgy, 1982: 7-9.
    [19]
    刘轩, 刘慧丛, 李卫平, 等. 7075铝合金在不同温度盐水环境中的腐蚀疲劳行为[J]. 航空学报, 2014, 35(10): 2850-2856.

    LIU X, LIU H C, LI W P, et al. Corrosion fatigue behavior of 7075 aluminum alloy in saline water environment at different temperatures[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2850-2856 (in Chinese).
    [20]
    LUO C, ALBU S P, ZHOU X R, et al. Continuous and discontinuous localized corrosion of a 2xxx aluminum–copper–lithium alloy in sodium chloride solution[J]. Journal of Alloys and Compounds, 2016, 658: 61-70. doi: 10.1016/j.jallcom.2015.10.185
    [21]
    李劲风, 郑子樵, 李世晨, 等. 2195铝-锂合金晶间腐蚀及剥蚀行为研究[J]. 材料科学与工程学报, 2004, 22(5): 640-643. doi: 10.3969/j.issn.1673-2812.2004.05.005

    LI J F, ZHENG Z Q, LI S C, et al. Study on intergranular corrosion and exfoliation corrosion behaviors of 2195 Al-Li alloy[J]. Journal of Materials Science and Engineering, 2004, 22(5): 640-643 (in Chinese). doi: 10.3969/j.issn.1673-2812.2004.05.005
    [22]
    孔祥, 郑子樵, 李劲风, 等. 时效制度对2099铝锂合金力学和应力腐蚀性能的影响[J]. 稀有金属材料与工程, 2016, 45(12): 3271-3277.

    KONG X, ZHENG Z Q, LI J F, et al. Effects of aging treatment on mechanical and stress corrosion properties of 2099 alloy[J]. Rare Metal Materials and Engineering, 2016, 45(12): 3271-3277 (in Chinese).
    [23]
    ZHANG X, ZHOU X, HASHIMOTO T, et al. The influence of grain structure on the corrosion behaviour of 2A97-T3 Al-Cu-Li alloy[J]. Corrosion Science, 2017, 116: 14-21. doi: 10.1016/j.corsci.2016.12.005
    [24]
    HUGHES A E, BOAG A, GLENN A M, et al. Corrosion of AA2024-T3 Part II: Co-operative corrosion[J]. Corrosion Science, 2011, 53(1): 27-39. doi: 10.1016/j.corsci.2010.09.030
    [25]
    LI M C, SEYEUX A, WIAME F, et al. Insights on the Al-Cu-Fe-Mn intermetallic particles induced pitting corrosion of Al-Cu-Li alloy[J]. Corrosion Science, 2020, 176: 109040. doi: 10.1016/j.corsci.2020.109040
    [26]
    SONG H P, LIU C C, ZHANG H, et al. In-situ SEM study of fatigue micro-crack initiation and propagation behavior in pre-corroded AA7075-T7651[J]. International Journal of Fatigue, 2020, 137: 105655. doi: 10.1016/j.ijfatigue.2020.105655
    [27]
    MA M Y, ZHANG J Y, YI D Q, et al. Investigation of high-cycle fatigue and fatigue crack propagation characteristic in 5083-O aluminum alloy[J]. International Journal of Fatigue, 2019, 126: 357-368. doi: 10.1016/j.ijfatigue.2019.05.020
    [28]
    马少华, 回丽, 周松, 等. 腐蚀环境对预腐蚀铝合金腐蚀疲劳性能的影响[J]. 材料工程, 2015, 43(2): 91-95. doi: 10.11868/j.issn.1001-4381.2015.02.015

    MA S H, HUI L, ZHOU S, et al. Influence of corrosion environments on corrosion fatigue property of pre-corroded aluminum alloy[J]. Journal of Materials Engineering, 2015, 43(2): 91-95 (in Chinese). doi: 10.11868/j.issn.1001-4381.2015.02.015
    [29]
    周松, 谢里阳, 回丽, 等. 航空铝合金预腐蚀疲劳寿命退化规律[J]. 东北大学学报(自然科学版), 2016, 37(7): 969-973. doi: 10.3969/j.issn.1005-3026.2016.07.013

    ZHOU S, XIE L Y, HUI L, et al. Fatigue life degenerating rule of pre-corroded aviation aluminum alloy[J]. Journal of Northeastern University (Natural Science), 2016, 37(7): 969-973 (in Chinese). doi: 10.3969/j.issn.1005-3026.2016.07.013
    [30]
    佘玲娟, 郑子樵, 钟申, 等. 6156-T62铝合金的高周疲劳性能研究[J]. 稀有金属材料与工程, 2012, 41(7): 1201-1205. doi: 10.3969/j.issn.1002-185X.2012.07.016

    SHE L J, ZHENG Z Q, ZHONG S, et al. High cycle fatigue performance of 6156-T62 aluminum alloy[J]. Rare Metal Materials and Engineering, 2012, 41(7): 1201-1205 (in Chinese). doi: 10.3969/j.issn.1002-185X.2012.07.016
    [31]
    章刚, 刘军, 刘永寿, 等. 表面粗糙度对表面应力集中系数和疲劳寿命影响分析[J]. 机械强度, 2010, 32(1): 110-115.

    ZHANG G, LIU J, LIU Y S, et al. Effect of roughness on surface stress concentration factor and fatigue life[J]. Journal of Mechanical Strength, 2010, 32(1): 110-115 (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views(93) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return