Volume 50 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
ZHANG H Y,LI S X,WANG Y,et al. Nozzle plume erosion property on lunar dust in Chang’E-5 mission[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1251-1261 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0447
Citation: ZHANG H Y,LI S X,WANG Y,et al. Nozzle plume erosion property on lunar dust in Chang’E-5 mission[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1251-1261 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0447

Nozzle plume erosion property on lunar dust in Chang’E-5 mission

doi: 10.13700/j.bh.1001-5965.2022.0447
Funds:  National Natural Science Foundation of China (42004157); National Key Laboratory of Materials Behaviors and Evaluation Technoloty in Space Environments (WDZC-HGD-2022-08); National Key Laboratory of Science and Technology on Vacuum Technology and Physics, China (6142207200202); Natural Science Foundation of Gansu Province, China (21JR7RA743);The Youth Talent Promotion Project of Gansu Province (GXH20210611-05)
More Information
  • Corresponding author: E-mail:wangwd@mail.xidian.edu.cn
  • Received Date: 31 May 2022
  • Accepted Date: 03 Sep 2022
  • Available Online: 16 Sep 2022
  • Publish Date: 14 Sep 2022
  • During a lander landing, the plume-lunar surface interaction induces lunar dust ejection, which is the main reason for lunar dust hazards. The study adopts computational fluid dynamics(CFD) method to build a one-toone nozzle model and vacuum plume flow and diffusion model, through which the lunar dust erosion mass is investigated, and the lunar dust trajectory, ejection angle and velocity are obtained when nozzle altitude is from 0.5 to 2.0 m. The results show that the maximum mass erosion rate is 8.83 kg/m2·s and this value decreases with nozzle altitude increase, which also is consistent with landing photo results in the Chang’E-5 mission. For lunar dust kinetic properties, the maximum velocity for 1 μm and 70 μm particles are 2 520 m/s and 1 010 m/s respectively, the maximum height for 1 μm and 70 μm particles are 0.72 m and 0.36 m respectively. The dust ejected angle ranges from 1.44° to 2.27°. The ejected angle calculated in Chang’E-5 mission is similar to that in Apollo mission.

     

  • loading
  • [1]
    GAIER J R, HICKS M C, MISCONIN R M. Studies of simulated lunar dust on the properties of thermal-control surfaces[J]. Journal of Spacecraft and Rockets, 2013, 50(4): 848-852. doi: 10.2514/1.A32135
    [2]
    JOHNSON C L, DIETZ K L. Effects of the Lunar Environment on Optical Telescopes and Instruments [C]//Proceedings of the Space Astronomical Telescopes and Instruments. Orlando: International Society for Optics and Photonics, 1991: 208-218.
    [3]
    PIRICH R, WEIR J, LEYBLE D, et al. Effects of the lunar environment on space vehicle surfaces [C]//2010 IEEE Long Island Systems, Applications and Technology Conferenc. Piscataway: IEEE, 2010: 1-6.
    [4]
    CAIN J R. Lunar dust: the hazard and astronaut exposure risks[J]. Earth, Moon, and Planets, 2010, 107(1): 107-125. doi: 10.1007/s11038-010-9365-0
    [5]
    MORRIS A B, GOLDSTEIN D B, VARGHESE P L, et al. Plume impingement on a dusty lunar surface [C]//AIP Conference Proceedings. California: AIP, 2011: 1187-1192.
    [6]
    IMMER C, LANE J, METZGER P, et al. Apollo video photogrammetry estimation of plume impingement effects[J]. Icarus, 2011, 214(1): 46-52. doi: 10.1016/j.icarus.2011.04.018
    [7]
    METZGER P T, IMMER C D, DONAHUE C M, et al. Jet-induced cratering of a granular surface with application to lunar spaceports[J]. Journal of Aerospace Engineering, 2009, 22(1): 24-32. doi: 10.1061/(ASCE)0893-1321(2009)22:1(24)
    [8]
    BÜHLER C A. Experimental investigation of lunar dust impact wear[J]. Wear, 2015, 342/343: 244-251. doi: 10.1016/j.wear.2015.09.002
    [9]
    DONOHUE C M, METZGER P T, IMMER C D. Empirical Scaling Laws of Rocket Exhaust Cratering [EB/OL]. [2021-04-12]. http://arxiv.org/abs/2104.05176.pdf.
    [10]
    LANE J E, METZGER P T. Estimation of Apollo lunar dust transport using optical extinction measurements[J]. Acta Geophysica, 2015, 63(2): 568-599. doi: 10.1515/acgeo-2015-0005
    [11]
    METZGER P T, LANE J E, IMMER C D, et al. Scaling of erosion rate in subsonic jet experiments and Apollo lunar module landings [C]//Earth and Space 2010. Reston, VA: American Society of Civil Engineers, 2010: 191-207.
    [12]
    LANE J E, METZGER P T, CARLSON J W. Lunar dust particles blown by lander engine exhaust in rarefied and compressible flow [C]//Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments. Reston, VA: American Society of Civil Engineers, 2010: 134-142.
    [13]
    LANE J E, METZGER P T, IMMER C D, et al. Lagrangian trajectory modeling of lunar dust particles [C]//Earth & Space 2008. Reston, VA: American Society of Civil Engineers, 2008: 1-9.
    [14]
    MORRIS A B, GOLDSTEIN D B, VARGHESE P L, et al. Plume impingement on a dusty lunar surface[J]. AIP Conference Proceedings, 2011, 1333(1): 1187-1192.
    [15]
    MORRIS A B, GOLDSTEIN D B, VARGHESE P L, et al. Modeling the interaction between a rocket plume, scoured regolith, and a plume deflection fence [C]//Earth and Space 2012: Engineering, Science, Construction, and Operations in Challenging Environments. Reston, VA: American Society of Civil Engineers, 2012: 189-198.
    [16]
    MORRIS A B, GOLDSTEIN D B, VARGHESE P L, et al. Approach for modeling rocket plume impingement and dust dispersal on the moon[J]. Journal of Spacecraft and Rockets, 2015, 52(2): 362-374. doi: 10.2514/1.A33058
    [17]
    LIEVER P, TOSH A, ARSLANBEKOV R, et al. Modeling of rocket plume impingement flow and debris transport in lunar environment [C]//Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: AIAA, 2012: 800.
    [18]
    HE X Y, HE B J, CAI G B. Simulation of two-phase plume field of liquid thruster[J]. Science China Technological Sciences, 2012, 55(6): 1739-1748. doi: 10.1007/s11431-012-4825-6
    [19]
    RAHIMI A, EJTEHADI O, LEE K H, et al. Near-field plume-surface interaction and regolith erosion and dispersal during the lunar landing[J]. Acta Astronautica, 2020, 175: 308-326. doi: 10.1016/j.actaastro.2020.05.042
    [20]
    ZHANG H H, LI J, WANG Z G, et al. Guidance navigation and control for Chang’E-5 powered descent[J]. Space:Science and Technology, 2021, 2021: 9823609.
    [21]
    LI Y, REN D P, BO Z G, et al. Gas-particle two-way coupled method for simulating the interaction between a rocket plume and lunar dust[J]. Acta Astronautica, 2019, 157: 123-133. doi: 10.1016/j.actaastro.2018.12.024
    [22]
    BERG J J, GOLDSTEIN D B, VARGHESE P L, et al. DSMC simulation of europa water vapor plumes[J]. Icarus, 2016, 277: 370-380. doi: 10.1016/j.icarus.2016.05.030
    [23]
    TSENG W L, LAI I L, IP W H, et al. The 3D direct simulation Monte Carlo study of Europa’s gas plume[J]. Universe, 2022, 8(5): 261. doi: 10.3390/universe8050261
    [24]
    SLYUTA E N. Physical and mechanical properties of the lunar soil (a review)[J]. Solar System Research, 2014, 48(5): 330-353. doi: 10.1134/S0038094614050050
    [25]
    COLWELL J E, BATISTE S, HORÁNYI M, et al. Lunar surface: dust dynamics and regolith mechanics[J]. Reviews of Geophysics, 2007, 45(2): 1-26.
    [26]
    LI C L, HU H, YANG M F, et al. Characteristics of the lunar samples returned by the Chang’E-5 mission[J]. National Science Review, 2022, 9(2): 188. doi: 10.1093/nsr/nwab188
    [27]
    MORSI S A, ALEXANDER A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55(2): 193. doi: 10.1017/S0022112072001806
    [28]
    MORRIS, A B. Simulation of rocket plume impingement and dust dispersal on the lunar surface[D]. Austin: University of Texas at Austin, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views(228) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return