Volume 50 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
ZHANG D D,WANG C P,FU Q. Ship’s critical part detection algorithm based on anchor-free in optical remote sensing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1365-1374 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0450
Citation: ZHANG D D,WANG C P,FU Q. Ship’s critical part detection algorithm based on anchor-free in optical remote sensing[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1365-1374 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0450

Ship’s critical part detection algorithm based on anchor-free in optical remote sensing

doi: 10.13700/j.bh.1001-5965.2022.0450
More Information
  • Corresponding author: E-mail:1418748495@qq.com
  • Received Date: 31 May 2022
  • Accepted Date: 08 Aug 2022
  • Available Online: 19 Aug 2022
  • Publish Date: 18 Aug 2022
  • Low detection effectiveness and inadequate refinement plague the existing deep learning-based remote sensing ship detection technique. To address the above problems, an optical remote sensing ship critical part detection algorithm based on anchor-free is proposed. The proposed algorithm takes fully convolutional one-stage object detection (FCOS) as the benchmark algorithm and introduces a global context module in the backbone network to improve the feature representation capability of the network. In the prediction step, a regression branch with orientation representation capabilities is built to more accurately describe the orientation of targets. The centrality function is optimized to make it direction-aware and adaptive. The experimental results show that the average precision (AP) of the proposed algorithm is significant improved over FCOS algorithm on the self-built ship critical part dataset and HRSC2016, respectively. Compared with other algorithms, the proposed algorithm has superior performance in both detection speed and detection accuracy and has high detection efficiency.

     

  • loading
  • [1]
    KANJIR U, GREIDANUS H, OŠTIR K. Vessel detection and classification from spaceborne optical images: A literature survey[J]. Remote Sensing of Environment, 2018, 207: 1-26. doi: 10.1016/j.rse.2017.12.033
    [2]
    刘俊琦, 李智, 张学阳. 可见光遥感图像海面目标检测技术综述[J]. 计算机科学, 2020, 47(3): 116-123.

    LIU J Q, LI Z, ZHANG X Y. Review of maritime target detection in visible bands of optical remote sensing images[J]. Computer Science, 2020, 47(3): 116-123 (in Chinese).
    [3]
    李晓斌, 江碧涛, 杨渊博, 等. 光学遥感图像目标检测技术综述[J]. 航天返回与遥感, 2019, 40(4): 95-104. doi: 10.3969/j.issn.1009-8518.2019.04.011

    LI X B, JIANG B T, YANG Y B, et al. A survey on object technology in optical remote sensing images[J]. Spacecraft recovery & Remote Sensing, 2019, 40(4): 95-104 (in Chinese). doi: 10.3969/j.issn.1009-8518.2019.04.011
    [4]
    张财广, 熊博莅, 匡纲要. 光学卫星遥感图像舰船目标检测综述[J]. 电波科学学报, 2020, 35(5): 637-647.

    ZHANG C G, XIONG B L, KUANG G Y. A survey of ship detection in optical satellite remote sensing images[J]. Chinese Journal of Radio Science, 2020, 35(5): 637-647 (in Chinese).
    [5]
    张永胜, 计一飞, 董臻. 时-空变化的背景电离层对星载合成孔径雷达方位向成像的影响分析[J]. 电子与信息学报, 2021, 43(10): 2781-2789.

    ZHANG Y S, JI Y F, DONG Z. Research on background ionospheric impacts imposed by spatio-temporal variations on spaceborne synthetic aperture radar azimuth imaging[J]. Journal of Electronics & Information Technology, 2021, 43(10): 2781-2789 (in Chinese).
    [6]
    GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1440-1448.
    [7]
    REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [8]
    HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2980-2988.
    [9]
    LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [10]
    REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 6517-6525.
    [11]
    LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2999-3007.
    [12]
    史文旭, 江金洪, 鲍胜利. 基于特征融合的遥感图像舰船目标检测算法[J]. 光子学报, 2020, 49(7): 57-67.

    SHI W X, JIANG J H, BAO S L. Ship detection method in remote sensing image based on feature fusion[J]. Acta Photonica Sinica, 2020, 49(7): 57-67 (in Chinese).
    [13]
    吴止锾, 李磊, 高永明. 遥感图像舰船检测的旋转卷积集成YOLOv3模型[J]. 计算机工程与应用, 2019, 55(22): 146-151.

    WU Z H, LI L, GAO Y M. Rotation convolution ensemble YOLOv3 model for ship detection in remote sensing images[J]. Computer Engineering and Applications, 2019, 55(22): 146-151 (in Chinese).
    [14]
    YANG X, YAN J C, FENG Z M, et al. R3Det: Refined single-stage detector with feature refinement for rotating object[EB/OL]. (2020-12-08) [2020-12-10]. http://arxiv.org/abs/1908.05612.pdf.
    [15]
    赵微, 惠斌, 张玉晓. 红外舰船目标的要害点检测算法[J]. 红外与激光工程, 2014, 43(1): 48-52.

    ZHAO W, HUI B, ZHANG Y X. Detection algorithms of aim points of IR warship images[J]. Infrared and Laser Engineering, 2014, 43(1): 48-52 (in Chinese).
    [16]
    李晨瑄, 顾佼佼, 王磊, 等. 多尺度特征融合的Anchor-Free轻量化舰船要害部位检测算法[J]. 北京航空航天大学学报, 2022, 48(10): 2006-2019.

    LI C X, GU J J, WANG L, et al. Warship’s vital parts detection algorithm based on lightweight anchor-free network with multi-scale feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 2006-2019 (in Chinese).
    [17]
    张长伦, 张翠文, 王恒友, 等. 基于注意力机制的NMS在目标检测中的研究[J]. 电子测量技术, 2021, 44(19): 82-88.

    ZHANG C L, ZHANG C W, WANG H Y, et al. Research on non-maximum suppression based on attention mechanism in object detection[J]. Electronic Measurement Technology, 2021, 44(19): 82-88 (in Chinese).
    [18]
    LAW H, DENG J. CornerNet: Detecting objects as paired keypoints[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018: 765-781.
    [19]
    DUAN K W, BAI S, XIE L X, et al. CenterNet: Keypoint triplets for object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2020: 6568-6577.
    [20]
    GE Z, LIU S T, WANG F, et al. YOLOX: Exceeding YOLO series in 2021[EB/OL]. (2021-08-06) [2021-08-10]. http://arxiv.org/abs/2107.08430.pdf.
    [21]
    TIAN Z, SHEN C H, CHEN H, et al. FCOS: A simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1922-1933.
    [22]
    CAO Y, XU J R, LIN S, et al. GCNet: Non-local networks meet squeeze-excitation networks and beyond[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Piscataway: IEEE Press, 2020: 1971-1980.
    [23]
    LANG S, VENTOLA F, KERSTING K. DAFNe: A one-stage anchor-free approach for oriented object detection[EB/OL]. (2022-05-30) [2022-06-02]. http://arxiv.org/abs/2109.06148.pdf.
    [24]
    LIU Z K, YUAN L, WENG L B, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]//Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods. Porto: Science and Technology Publications, 2017.
    [25]
    MA Y, CHAI L, JIN L Z, et al. AVS-YOLO: Object detection in aerial visual scene[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2022, 36(1): 2250004. doi: 10.1142/S0218001422500045
    [26]
    GAO X, RAM S, PHILIP R C, et al. Selecting post-processing schemes for accurate detection of small objects in low-resolution wide-area aerial imagery[J]. Remote Sensing, 2022, 14(2): 255. doi: 10.3390/rs14020255
    [27]
    LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307. doi: 10.1016/j.isprsjprs.2019.11.023
    [28]
    XIA G S, BAI X, DING J, et al. DOTA: A large-scale dataset for object detection in aerial images[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 3974-3983.
    [29]
    ZHANG H Y, WANG Y, DAYOUB F, et al. VarifocalNet: An IoU-aware dense object detector[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 8510-8519.
    [30]
    YI J R, WU P X, LIU B, et al. Oriented object detection in aerial images with box boundary-aware vectors[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE Press, 2021: 2149-2158.
    [31]
    HOU L P, LU K, XUE J A, et al. Shape-adaptive selection and measurement for oriented object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Washton D. C.: AAAI, 2022, 36(1): 923-932.
    [32]
    YANG Y, PAN Z X, HU Y X, et al. CPS-det: An anchor-free based rotation detector for ship detection[J]. Remote Sensing, 2021, 13(11): 2208. doi: 10.3390/rs13112208
    [33]
    ZHANG X R, WANG G C, ZHU P, et al. GRS-det: An anchor-free rotation ship detector based on gaussian-mask in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(4): 3518-3531. doi: 10.1109/TGRS.2020.3018106
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views(184) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return