Volume 50 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
ZHANG W,GAO Z H,WANG C,et al. Efficient surrogate-based aerodynamic optimization with parameter-free adaptive penalty function[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1262-1272 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0451
Citation: ZHANG W,GAO Z H,WANG C,et al. Efficient surrogate-based aerodynamic optimization with parameter-free adaptive penalty function[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1262-1272 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0451

Efficient surrogate-based aerodynamic optimization with parameter-free adaptive penalty function

doi: 10.13700/j.bh.1001-5965.2022.0451
Funds:  National Key Laboratory Foundation of Airfoil and Blade Grid Aerodynamics (614220121020128)
More Information
  • Corresponding author: E-mail:zgao@nwpu.edu.cn
  • Received Date: 31 May 2022
  • Accepted Date: 18 Sep 2022
  • Available Online: 31 Oct 2022
  • Publish Date: 10 Oct 2022
  • Complex constraints must be addressed in the aerodynamic optimizations. Distinct constraints not only influence the optimization outcomes but also significantly influence the optimization method's efficacy. This paper investigates the impact of reference points on optimization design results using the constrained efficient global optimization method (EGO) and suggests a mechanism for selecting reference points that takes constraints into account. Afterwards, for the problem of constraint processing, the constrained expected improvement (EI) method and the penalty function method are compared and found that the penalty function method can find a feasible solution that satisfies the constraints more quickly. However, in this process, the penalty factor has a great influence on the optimization efficiency, and inappropriate penalty factors will damage the optimization efficiency. Drawing on the aforementioned evaluation, this study suggests a constrained EGO technique utilizing an adaptive penalty function that is free of parameters. By normalizing the target value and the constraint value, the feasible solution with the smallest target value or the infeasible solution closest to the feasible region is selected as the reference point. The penalty factor is adaptively adjusted, so that the algorithm can search for the ideal solution sufficiently. This approach can significantly increase the optimization efficiency, as shown by the constrained test functions and airfoil design challenges.

     

  • loading
  • [1]
    QUEIPO N V, HAFTKA R T, SHYY W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41(1): 1-28. doi: 10.1016/j.paerosci.2005.02.001
    [2]
    JONES D R. A taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization, 2001, 21(4): 345-383. doi: 10.1023/A:1012771025575
    [3]
    LOCATELLI M. Bayesian algorithms for one-dimensional global optimization[J]. Journal of Global Optimization, 1997, 10(1): 57-76. doi: 10.1023/A:1008294716304
    [4]
    WANG G G, SHAN S. Review of metamodeling techniques in support of engineering design optimization[J]. Journal of Mechanical Design, 2007, 129(4): 370-380. doi: 10.1115/1.2429697
    [5]
    XING J, LUO Y J, GAO Z H. A global optimization strategy based on the Kriging surrogate model and parallel computing[J]. Structural and Multidisciplinary Optimization, 2020, 62(1): 405-417.
    [6]
    LI Y H, SHI J J, CEN H, et al. A Kriging-based adaptive global optimization method with generalized expected improvement and its application in numerical simulation and crop evapotranspiration[J]. Agricultural Water Management, 2021, 245: 106623. doi: 10.1016/j.agwat.2020.106623
    [7]
    夏露, 王丹. 基于Kriging自适应代理模型的气动优化方法[J]. 航空计算技术, 2013, 43(1): 13-17. doi: 10.3969/j.issn.1671-654X.2013.01.004

    XIA L, WANG D. Aerodynamic optimization method based on Kriging adaptive surrogate model[J]. Aeronautical Computing Technique, 2013, 43(1): 13-17(in Chinese). doi: 10.3969/j.issn.1671-654X.2013.01.004
    [8]
    韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.

    HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225(in Chinese).
    [9]
    BHOSEKAR A, IERAPERTRITOU M. Advances in surrogate based modeling, feasibility analysis, and optimization: A review[J]. Computers & Chemical Engineering, 2018, 108(4): 250-267.
    [10]
    BONS N P, HE X L, MADER C A, et al. Multimodality in aerodynamic wing design optimization[J]. AIAA Journal, 2019, 57(3): 1004-1018. doi: 10.2514/1.J057294
    [11]
    LEIFSSON L, KO A, MASON W H, et al. Multidisciplinary design optimization of blended-wing-body transport aircraft with distributed propulsion[J]. Aerospace Science and Technology, 2013, 25(1): 16-28.
    [12]
    VISWANATH A, FORRESTER A I J, KEANE A J. Constrained design optimization using generative topographic mapping[J]. AIAA Journal, 2014, 52(5): 1010-1023. doi: 10.2514/1.J052414
    [13]
    ZHOU L, HUANG J T, GAO Z H, et al. Three-dimensional aerodynamic/stealth optimization based on adjoint sensitivity analysis for scattering problem[J]. AIAA Journal, 2020, 58(6): 2702-2715. doi: 10.2514/1.J059136
    [14]
    黄江涛, 高正红, 余婧, 等. 大型民用飞机气动外形典型综合设计方法[J]. 航空学报, 2019, 40(2): 522369.

    HUANG J T, GAO Z H, YU J, et al. A typical integrated design method for aerodynamic shape optimization of large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 522369(in Chinese).
    [15]
    SASENA M J, PAPALAMBROS P, GOOVAERTS P. Exploration of metamodeling sampling criteria for constrained global optimization[J]. Engineering Optimization, 2002, 34(3): 263-278. doi: 10.1080/03052150211751
    [16]
    PARR J M, KEANE A J, FORRESTER A I J, et al. Infill sampling criteria for surrogate-based optimization with constraint handling[J]. Engineering Optimization, 2012, 44(10): 1147-1166. doi: 10.1080/0305215X.2011.637556
    [17]
    BASUDHAR A, DRIBUSCH C, LACAZE S, et al. Constrained efficient global optimization with support vector machines[J]. Structural and Multidisciplinary Optimization, 2012, 46(2): 201-221.
    [18]
    BRERETON R G, LLOYD G R. Support vector machines for classification and regression[J]. Analyst, 2010, 135(2): 230-267. doi: 10.1039/B918972F
    [19]
    BAGHERI S, KONEN W, ALLMENDINGER R, et al. Constraint handling in efficient global optimization[C]// Proceedings of the Genetic and Evolutionary Computation Conference. New York: ACM, 2017, 1: 673-680.
    [20]
    KRAMER O. A review of constraint-handling techniques for evolution strategies[J]. Applied Computational Intelligence and Soft Computing, 2010, 2010: 3.
    [21]
    MEZURA-MONTES E, COELLO C A C. Constraint-handling in nature-inspired numerical optimization: past, present and future[J]. Swarm and Evolutionary Computation, 2011, 1(4): 173-194. doi: 10.1016/j.swevo.2011.10.001
    [22]
    LIU B, GROUT V, NIKOLAEVA A. Efficient global optimization of actuator based on a surrogate model assisted hybrid algorithm[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5712-5721.
    [23]
    ZAEFFERER M, STORK J, FRIESE M, et al. Efficient global optimization for combinatorial problems[C]// Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2014, 1: 871-878.
    [24]
    王红涛, 竺晓程, 杜朝辉. 改进EGO算法在跨声速翼型气动优化设计中的应用[J]. 上海交通大学学报, 2009, 43(11): 1832-1836. doi: 10.3321/j.issn:1006-2467.2009.11.033

    WANG H T, ZHU X C, DU Z H. Application of the improved EGO algorithm in transonic airfoil aerodynamic optimization design[J]. Journal of Shanghai Jiao Tong University, 2009, 43(11): 1832-1836(in Chinese). doi: 10.3321/j.issn:1006-2467.2009.11.033
    [25]
    龙腾, 刘建, 陈余军, 等. 基于约束EGO的对地观测卫星多学科设计优化[J]. 机械工程学报, 2018, 54(10): 133-142. doi: 10.3901/JME.2018.10.133

    LONG T, LIU J, CHEN Y J, et al. Multi-disciplinary design optimization of earth observation satellite based on constrained EGO[J]. Journal of Mechanical Engineering, 2018, 54(10): 133-142(in Chinese). doi: 10.3901/JME.2018.10.133
    [26]
    DONG H C, SONG B W, DONG Z M, et al. SCGOSR: Surrogate-based constrained global optimization using space reduction[J]. Applied Soft Computing, 2018, 65(c): 462-477.
    [27]
    NADARAJSH S. Aerodynamic design optimization: Drag minimization of the NACA 0012 in transonic inviscid flow[EB/OL]. (2017-09-15)[2022-05-31]. https://info.aiaa.org/tac/ASG/APATC/AeroDesignOpt-DG/Tes.
    [28]
    KEANE A, FORRESTER A, SOBESTER A. Engineering design via surrogate modelling: A practical guide[M]. Reston: AIAA, 2008.
    [29]
    CASTILLO O, MELIN P. Genetic algorithms and simulated annealing[M]// Soft Computing and Fractal Theory for Intelligent Manufacturing. Heidelberg: Physica, 2003, 1: 93-125.
    [30]
    AKBARI H, KAZEROONI A. KASRA: A Kriging-based adaptive space reduction algorithm for global optimization of computationally expensive black-box constrained problems[J]. Applied Soft Computing, 2020, 90: 106154. doi: 10.1016/j.asoc.2020.106154
    [31]
    KULFAN B, BUSSOLETTI J. Fundamental parameteric geometry representations for aircraft component shapes[C]// 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2006: 6948.
    [32]
    王超, 高正红, 张伟, 等. 自适应设计空间扩展的高效代理模型气动优化设计方法[J]. 航空学报, 2018, 39(7): 121745.

    WANG C, GAO Z H, ZHANG W, et al. Efficient surrogate-based aerodynamic design optimization method with adaptive design space expansion[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 121745(in Chinese).
    [33]
    SEARS W. Flying-wing airplanes-The XB-35/YB-49 program[C]// The evolution of aircraft wing design; Proceedings of the Symposium. Reston: AIAA, 1980: 3036.
    [34]
    LIEBECK R H. Design of the blended-wing-body subsonic transport[J]. Journal of Aircraft, 2004, 41(1): 10-25. doi: 10.2514/1.9084
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(6)

    Article Metrics

    Article views(197) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return