Volume 50 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
ZHANG S,HAN X W,LI R P,et al. Improved remote regulated power supply control scheme in improved flyback converter[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1229-1239 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0458
Citation: ZHANG S,HAN X W,LI R P,et al. Improved remote regulated power supply control scheme in improved flyback converter[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1229-1239 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0458

Improved remote regulated power supply control scheme in improved flyback converter

doi: 10.13700/j.bh.1001-5965.2022.0458
More Information
  • Corresponding author: E-mail:2569119978@qq.com
  • Received Date: 08 Jun 2022
  • Accepted Date: 15 Aug 2022
  • Available Online: 29 Apr 2024
  • Publish Date: 30 Sep 2022
  • In order to improve the power supply quality of the remote regulated power supply and ensure that the output voltage of the transmitter device reaches the set value quickly and smoothly under the premise of high reliability, a design method of the remote regulated power supply in the flyback topology mode is introduced, and the corresponding mathematical model is established. Here, a fuzzy proportional-integral-derivative (PID) control algorithm for pre-domain tuning is presented. It uses fuzzy logic to process the dynamic parameter value of the remote regulated power supply in real time, and it maps the generated quantitative value to the control element in accordance with the anti-fuzzy mapping function. This effectively avoids the phenomenon of over-adjustment and eliminates the accidentality of the trial method and the amplification effect of the scale factor on the error. According to simulation results, the fuzzy PID control algorithm with pre-domain tuning performs better in steady-state conditions than the fuzzy PID control algorithm without pre-domain tuning. The adjustment time, response time, and reduction to 1.4 ms are all shortened by 48.1%, 28.6%, and 37.5%, respectively, while the control scheme is also able to withstand abrupt interference with good effectiveness. The experimental results show that the pre-tuned fuzzy PID control algorithm can be applied to the actual industrial environment, and compared with the traditional control algorithm in the industrial environment, the pre-tuned fuzzy PID control algorithm can greatly improve the power supply quality of the remote regulated power supply and has excellent robustness.

     

  • loading
  • [1]
    孙艳秋, 吴庆军, 张硕, 等. 面向零窗口发射的全冗余一体化测发控系统[J]. 导弹与航天运载技术, 2022(1): 53-58.

    SUN Y Q, WU Q J, ZHANG S, et al. Integrated measurement control and launch system with full redundancy for zero-window launching[J]. Missiles and Space Vehicles, 2022(1): 53-58 (in Chinese).
    [2]
    孙志群, 李强, 袁卫, 等. 路面激励对火箭炮行进间发射控制的影响研究[J]. 兵器装备工程学报, 2021, 42(4): 37-41. doi: 10.11809/bqzbgcxb2021.04.007

    SUN Z Q, LI Q, YUAN W, et al. Study on effect of road excitation on rocket launch control between travels[J]. Journal of Ordnance Equipment Engineering, 2021, 42(4): 37-41 (in Chinese). doi: 10.11809/bqzbgcxb2021.04.007
    [3]
    周逢道, 王爽, 赵心晖, 等. 高精度同步输出多功能发射控制技术[J]. 中南大学学报(自然科学版), 2016, 47(8): 2636-2642.

    ZHOU F D, WANG S, ZHAO X H, et al. Multifunctional transmitter control technology with high-precision synchronization output[J]. Journal of Central South University (Science and Technology), 2016, 47(8): 2636-2642 (in Chinese).
    [4]
    陈朋, 毛待春, 陈思逾, 等. 基于反激拓扑与RC隔离触发网络的短弧脉冲氙灯电源设计[J]. 强激光与粒子束, 2021, 33(3): 123-131. doi: 10.11884/HPLPB202133.200316

    CHEN P, MAO D C, CHEN S Y, et al. Design of short-arc xenon flashlamp power supply based on flyback topology and RC isolation trigger network[J]. High Power Laser and Particle Beams, 2021, 33(3): 123-131 (in Chinese). doi: 10.11884/HPLPB202133.200316
    [5]
    冯丹, 任宏滨, 李伟伟, 等. 反激式开关电源控制系统小信号模型[J]. 探测与控制学报, 2015, 37(5): 89-93.

    FENG D, REN H B, LI W W, et al. Small signal model of flyback switching power supply control system[J]. Journal of Detection & Control, 2015, 37(5): 89-93 (in Chinese).
    [6]
    唐潇, 孙文杰, 何明祖, 等. 双极性直线型变压器驱动源的研制[J]. 强激光与粒子束, 2021, 33(6): 36-43.

    TANG X, SUN W J, HE M Z, et al. A bipolar nanosecond pulse source based on liner transformer driver[J]. High Power Laser and Particle Beams, 2021, 33(6): 36-43 (in Chinese).
    [7]
    袁义生, 赖立. 一种多模式电流馈LCL谐振变换器[J]. 中国电机工程学报, 2020, 40(10): 3259-3270.

    YUAN Y S, LAI L. A Multi-mode current-fed LCL resonant converter[J]. Proceedings of the CSEE, 2020, 40(10): 3259-3270 (in Chinese).
    [8]
    张峰, 谢运祥, 胡炎申, 等. 临界模式混合光伏微型逆变器的特性分析[J]. 电工技术学报, 2020, 35(6): 1290-1302.

    ZHANG F, XIE Y X, HU Y S, et al. Characteristics analysis for a boundary conduction mode hybrid-type photovoltaic micro-inverter[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1290-1302 (in Chinese).
    [9]
    王凤国, 陈小雷, 许宝立, 等. 一种稳压电源远端供电电压补偿方法设计[J]. 电子器件, 2019, 42(4): 827-831. doi: 10.3969/j.issn.1005-9490.2019.04.004

    WANG F G, CHEN X L, XU B L, et al. Design of compensation method for remote power supply voltage of regulated power supply[J]. Journal of Electron Devices, 2019, 42(4): 827-831 (in Chinese). doi: 10.3969/j.issn.1005-9490.2019.04.004
    [10]
    孙凤, 张琪, 徐方超, 等. 激光光路控制电磁作动器的模糊PID控制特性分析[J]. 兵工学报, 2019, 40(2): 430-441. doi: 10.3969/j.issn.1000-1093.2019.02.024

    SUN F, ZHANG Q, XU F C, et al. Analysis of fuzzy PID control characteristics on electromagnetic actuator for laser optical path control[J]. Acta Armamentarii, 2019, 40(2): 430-441 (in Chinese). doi: 10.3969/j.issn.1000-1093.2019.02.024
    [11]
    陈帅, 汪成文, 张震阳, 等. 改进模糊PID方法及其在电液伺服控制中的应用[J]. 机电工程, 2021, 38(5): 559-565. doi: 10.3969/j.issn.1001-4551.2021.05.006

    CHEN S, WANG C W, ZHANG Z Y, et al. Improved fuzzy PID method and its application in electro-hydraulic servo control[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(5): 559-565 (in Chinese). doi: 10.3969/j.issn.1001-4551.2021.05.006
    [12]
    赵天宇, 苏庆宇. 基于变论域模糊控制的无刷直流电机转速问题[J]. 电机与控制应用, 2017, 44(11): 6-11. doi: 10.3969/j.issn.1673-6540.2017.11.002

    ZHAO T Y, SU Q Y. Brushless DC motor speed questions based on variable universe fuzzy control[J]. Electric Machines & Control Application, 2017, 44(11): 6-11 (in Chinese). doi: 10.3969/j.issn.1673-6540.2017.11.002
    [13]
    KARAHAN O. Design of optimal fractional order fuzzy PID controller based on cuckoo search algorithm for core power control in molten salt reactors[J]. Progress in Nuclear Energy, 2021, 139: 103868. doi: 10.1016/j.pnucene.2021.103868
    [14]
    MITRA P, DEY C, MUDI R K. Fuzzy rule-based set point weighting for fuzzy PID controller[J]. SN Applied Sciences, 2021, 3: 651.
    [15]
    RANJBAR E, MENHAJ M B, SURATGAR A A, et al. Design of a fuzzy PID controller for a MEMS tunable capacitor for noise reduction in a voltage reference source[J]. SN Applied Sciences, 2021, 3: 609.
    [16]
    YU L H, SONG S X. Design of flow cytometer liquid circuit control system based on incremental PID algorithm[J]. Journal of Physics:Conference Series, 2020, 1633(1): 012001. doi: 10.1088/1742-6596/1633/1/012001
    [17]
    KHADANGA R K, KUMAR A, PANDA S. Application of interval type-2 fuzzy PID controller for frequency regulation of AC islanded microgrid using modified equilibrium optimization algorithm[J]. Arabian Journal for Science and Engineering, 2021, 46(10): 1-17.
    [18]
    WANG B, GENG H P, LI H, et al. Particle swarm optimization-based fuzzy PID controller for stable control of active magnetic bearing system[J]. Journal of Physics:Conference Series, 2021, 1888(1): 012022. doi: 10.1088/1742-6596/1888/1/012022
    [19]
    KUMAR KHADANGA R, KUMAR A, PANDA S. Frequency control in hybrid distributed power systems via type-2 fuzzy PID controller[J]. IET Renewable Power Generation, 2021, 15(8): 1706-1723. doi: 10.1049/rpg2.12140
    [20]
    JIN X, CHEN K K, ZHAO Y, et al. Simulation of hydraulic transplanting robot control system based on fuzzy PID controller[J]. Measurement, 2020, 164: 108023. doi: 10.1016/j.measurement.2020.108023
    [21]
    SHI J Z, SONG Y. Mathematical Analysis of a simplified general type-2 fuzzy PID controller[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7994-8036. doi: 10.3934/mbe.2020406
    [22]
    WANG R X, AN A M, WEN Y A, et al. Study on the influence of parallel fuzzy PID control on the regulating system of a bulb tubular turbine generator unit[J]. Journal of Electrical Engineering & Technology, 2021, 16(3): 1403-1414.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article views(515) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return