Volume 50 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
TANG Y X,LIU Y M,AN Y F,et al. Flow mechanism of horseshoe vortex suction control for compressor cascade[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1282-1291 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0461
Citation: TANG Y X,LIU Y M,AN Y F,et al. Flow mechanism of horseshoe vortex suction control for compressor cascade[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1282-1291 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0461

Flow mechanism of horseshoe vortex suction control for compressor cascade

doi: 10.13700/j.bh.1001-5965.2022.0461
More Information
  • Corresponding author: E-mail:liuym@bit.edu.cn
  • Received Date: 08 Jun 2022
  • Accepted Date: 17 Jul 2022
  • Available Online: 03 Aug 2022
  • Publish Date: 03 Aug 2022
  • To explore the source flow control method for the corner separation, this paper takes the NACA65 cascade as the research object and applies the blade leading edge endwall suction technology to control the horseshoe vortex with the numerical simulation method. Combined with topology analysis, the three-dimensional flow field is accurately reconstructed and the control mechanism of the leading edge endwall suction is revealed to improve the cascade channel flow field performance. The results show that the leading edge endwall suction technology can effectively delay the formation of the horseshoe vortex and weaken its strength. Meanwhile, a pair of counter rotating vortices are formed at the end of the suction slit, which interacts with the passage vortex in the process of downstream development. By regulating horseshoe vortices, the suction lessens the thickness of the endwall boundary layer, inhibiting the formation of leading edge passage vortices and preventing surface separation caused by backflow. Because the leading edge and pressure side suction (EPS) directly acts on the pressure side leg of the horseshoe vortex, the passage vortex strength is further weakened, and the corner separation mode changes from closed separation to incomplete closed separation. Finally, the total pressure losses are compared at the outlet under the optimal suction coefficient. It is discovered that when the suction coefficient is 0.2%, the overall pressure loss at the EPS outflow section is decreased by 5.8%. At off-design situations, improved control performance can be attained by modifying the suction coefficient.

     

  • loading
  • [1]
    吴艳辉, 王博, 付裕, 等. 轴流压气机角区分离的研究进展[J]. 航空学报, 2017, 38(9): 107-128.

    WU Y H, WANG B, FU Y, et al. Research progress of corner separation in axial-flow compressor[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9): 107-128(in Chinese).
    [2]
    BAKER C J. Vortex flow around the bases of obstacles[D]. Cambridge : University of Cambridge, 1979.
    [3]
    ROBINSON S K. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics, 1991, 23(1): 601-639. doi: 10.1146/annurev.fl.23.010191.003125
    [4]
    WANG H, OLSON S J, GOLDSTEIN R J, et al. Flow visualization in a linear turbine cascade of high performance turbine blades[J]. Journal of Turbomachinery, 1997, 119(1): 1-8. doi: 10.1115/1.2841006
    [5]
    PHILIPS D B, CIMBALA J M, TREASTER A L. Suppression of the wing-body junction vortex by body surface suction[J]. Journal of Aircraft, 1992, 29(1): 118-122. doi: 10.2514/3.46134
    [6]
    BLOXHAM M J, BONS J P. Leading-edge endwall suction and midspan blowing to reduce turbomachinery losses[J]. Journal of Propulsion and Power, 2010, 26(6): 1268-1275. doi: 10.2514/1.46105
    [7]
    LIESNER K, MEYER R, LEMKE M, et al. On the efficiency of secondary flow suction in a compressor cascade[C]//Proceedings of the ASME Turbo Expo 2010: Power for Land, Sea, and Air. NewYork: ASME, 2010: 151-160.
    [8]
    GUO S, LU H, CHEN F, et al. Vortex control and aerodynamic performance improvement of a highly loaded compressor cascade via inlet boundary layer suction[J]. Experiments in Fluids, 2013, 54(7): 1570. doi: 10.1007/s00348-013-1570-y
    [9]
    CHEN P, QIAO W, LIESNER K, et al. Effect of segment endwall boundary layer suction on compressor 3D corner separation[C]//Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. NewYork: ASME, 2015.
    [10]
    ZHANG H, CHEN S. A comparative experimental analysis of two unsteady flow control methods in a highly loaded compressor cascade[J]. Experiments in Fluids, 2020, 61(6): 132. doi: 10.1007/s00348-020-02976-w
    [11]
    LIANG T, LIU B, SPENCE S. Effect of boundary layer suction on the corner separation in a highly loaded axial compressor cascade[J]. Journal of Turbomachinery, 2021, 143(6): 61002. doi: 10.1115/1.4050148
    [12]
    赵桂杰. 弯掠扩压叶栅内附面层与二次流控制的研究[D]. 哈尔滨: 哈尔滨工业大学, 2005.

    ZHAO G J. Study on boundary layer and secondary flow control in bowed-swept diffuser cascade[D]. Harbin: Harbin Institute of Technology, 2005(in Chinese).
    [13]
    TOBAK M, PEAKE D J. Topology of three-dimensional separated flows[J]. Annual Review of Fluid Mechanics, 1982, 14(1): 61-85. doi: 10.1146/annurev.fl.14.010182.000425
    [14]
    刘超群. Liutex-涡定义和第三代涡识别方法[J]. 空气动力学学报, 2020, 38(3): 413-431.

    LIU C Q, Liutex-third generation of vortex definition and identification methods[J]. Acta Aerodynamica Sinica, 2020, 38(3): 413-431(in Chinese).
    [15]
    HAO X, LE C, BAO L, et al. Numerical Investigations on Oscillating aspiration control in high-load compressor cascades[J]. Journal of Propulsion and Power, 2019, 35(4): 850-862. doi: 10.2514/1.B37200
    [16]
    DALLMANN U. Three-dimensional vortex structures and vorticity topology[J]. Fluid Dynamics Research, 1988, 3(1-4): 183-189. doi: 10.1016/0169-5983(88)90063-9
    [17]
    张华良. 采用叶片弯/掠及附面层抽吸控制扩压叶栅内涡结构的研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.

    ZHANG H L. Investigation on application of dihedral/swept blade and boundary layer suction to control vortex configuration in compressor cascades[D]. Harbin: Harbin Institute of Technology, 2007(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article Metrics

    Article views(197) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return