Volume 50 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
XIE C A,REN Y,YANG D Z,et al. Construction method of driving safety field model for unmanned vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1375-1383 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0462
Citation: XIE C A,REN Y,YANG D Z,et al. Construction method of driving safety field model for unmanned vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1375-1383 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0462

Construction method of driving safety field model for unmanned vehicles

doi: 10.13700/j.bh.1001-5965.2022.0462
Funds:  National Key Laboratory of Reliability and Environmental Engineering Technology Foundation (6142004210108)
More Information
  • Corresponding author: E-mail:09967@buaa.edu.cn
  • Received Date: 08 Jun 2022
  • Accepted Date: 11 Sep 2022
  • Available Online: 07 Nov 2022
  • Publish Date: 03 Nov 2022
  • In response to the shortage of comprehensive and systematic methods for evaluating the driving safety of unmanned vehicles, an enhanced driving safety field model is proposed, taking into account the impact of the complex road factors of unmanned vehicles as well as the characteristics of three artificial intelligence (AI) system modules: perception, decision-making, and control. A mathematical model of unmanned vehicle driving safety field combining dynamic potential field and safety behavior field is established based on Hooke’s law to characterize the driving risks caused by static objects, moving objects and AI system itself on the road. The correctness and usability of the proposed model is verified by the driving safety analysis of typical driving scenarios.

     

  • loading
  • [1]
    《中国公路学报》编辑部. 中国汽车工程学术研究综述·2017[J]. 中国公路学报, 2017, 30(6): 1-197. doi: 10.3969/j.issn.1001-7372.2017.06.001

    Editorial Department of China Journal of Highway and Transport. Review on China's automotive engineering research progress: 2017[J]. China Journal of Highway and Transport, 2017, 30(6): 1-197 (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.06.001
    [2]
    XU Q, LI K Q, WANG J Q, et al. The status, challenges, and trends: An interpretation of technology roadmap of intelligent and connected vehicles in China[J]. Journal of Intelligent and Connected Vehicles, 2022, 5(1): 1-7. doi: 10.1108/JICV-07-2021-0010
    [3]
    YUAN Q, XU X C, WANG T, et al. Investigating safety and liability of autonomous vehicles: Bayesian random parameter ordered probit model analysis[J]. Journal of Intelligent and Connected Vehicles, 2022, 5(3): 199-205. doi: 10.1108/JICV-04-2022-0012
    [4]
    VAN D H. A time-based analysis of road user behaviour in normal and critical encounters[M/OL]. (1990-04-24) [2021-11-01]. https://repository.tudelft.nl/islandora/object/uuid%3A8fb40be7-fae1-4481-bc37-12a7411b85c7.
    [5]
    KIEFER R J, FLANNAGAN C A, JEROME C J. Time-to-collision judgments under realistic driving conditions[J]. Human Factors: The Journal of the Human Factors and Ergonomics Society, 2006, 48(2): 334-345.
    [6]
    FULLER R G C. Determinants of time headway adopted by truck drivers[J]. Ergonomics, 1981, 24(6): 463-474. doi: 10.1080/00140138108924868
    [7]
    YUAN Q A, CHEN H Y. Factor comparison of passenger-vehicle to vulnerable road user crashes in Beijing, China[J]. International Journal of Crashworthiness, 2017, 22(3): 260-270. doi: 10.1080/13588265.2016.1248226
    [8]
    WANG J Q, WU J, ZHENG X J, et al. Driving safety field theory modeling and its application in pre-collision warning system[J]. Transportation Research Part C:Emerging Technologies, 2016, 72: 306-324. doi: 10.1016/j.trc.2016.10.003
    [9]
    ROSSETTER E J, GERDES J C. Lyapunov based performance guarantees for the potential field lane-keeping assistance system[J]. Journal of Dynamic Systems, Measurement, and Control, 2006, 128(3): 510-522. doi: 10.1115/1.2192835
    [10]
    BYRNE S, NAEEM W, FERGUSON S. Improved APF strategies for dual-arm local motion planning[J]. Transactions of the Institute of Measurement and Control, 2015, 37(1): 73-90. doi: 10.1177/0142331214532002
    [11]
    MILLER R, HUANG Q F. An adaptive peer-to-peer collision warning system[C]//Proceedings of the IEEE 55th Vehicular Technology Conference. Piscataway: IEEE Press, 2002: 317-321.
    [12]
    TSOURVELOUDIS N C, VALAVANIS K P, HEBERT T. Autonomous vehicle navigation utilizing electrostatic potential fields and fuzzy logic[J]. IEEE Transactions on Robotics and Automation, 2001, 17(4): 490-497. doi: 10.1109/70.954761
    [13]
    SATTEL T, BRANDT T. From robotics to automotive: Lane-keeping and collision avoidance based on elastic bands[J]. Vehicle System Dynamics, 2008, 46(7): 597-619. doi: 10.1080/00423110701543452
    [14]
    王建强, 吴剑, 李洋. 基于人-车-路协同的行车风险场概念、原理及建模[J]. 中国公路学报, 2016, 29(1): 105-114. doi: 10.3969/j.issn.1001-7372.2016.01.014

    WANG J Q, WU J, LI Y. Concept, principle and modeling of driving risk field based on driver-vehicle-road interaction[J]. China Journal of Highway and Transport, 2016, 29(1): 105-114(in Chinese). doi: 10.3969/j.issn.1001-7372.2016.01.014
    [15]
    贺启才, 蔡少康, 王康. 基于场论的汽车避撞方法研究[J]. 汽车实用技术, 2021, 46(9): 25-29.

    HE Q C, CAI S K, WANG K. Research on collision avoidance method based on field theory[J]. Automobile Applied Technology, 2021, 46(9): 25-29(in Chinese).
    [16]
    刘帅. 基于安全场的智能汽车个性化换道决策与规划算法研究[D]. 长春: 吉林大学, 2019: 69-88.

    LIU S. A personalized lane-changing decision-making and trajectory-planning method based on safety field for intelligent vehicles[D]. Changchun: Jilin University, 2019: 69-88 (in Chinese).
    [17]
    NI D H. A unified perspective on traffic flow theory. Part I: The field theory[J]. Applied Mathematical Sciences, 2013, 7: 1929-1946. doi: 10.12988/ams.2013.13175
    [18]
    杨杨, 任少杰, 杨正才. 基于改进型人工势场的无人车局部避障[J]. 湖北汽车工业学院学报, 2020, 34(4): 5-10. doi: 10.3969/j.issn.1008-5483.2020.04.002

    YANG Y, REN S J, YANG Z C. Local obstacle avoidance based on improved artificial potential field[J]. Journal of Hubei University of Automotive Technology, 2020, 34(4): 5-10(in Chinese). doi: 10.3969/j.issn.1008-5483.2020.04.002
    [19]
    张国辉, 王璇, 张雅楠, 等. 实际环境中多无人车协同路径规划模型研究[J]. 系统仿真学报, 2023, 35(2): 408-422.

    ZHANG G H, WANG X, ZHANG Y N, et al. Research on cooperative path planning model of multiple unmanned vehicles in real environment[J]. Journal of System Simulation, 2023, 35(2): 408-422 (in Chinese).
    [20]
    BERRY A J, HOWITT J, GU D W, et al. A continuous local motion planning framework for unmanned vehicles in complex environments[J]. Journal of Intelligent & Robotic Systems, 2012, 66: 477-494.
    [21]
    TRENTINI M, BECKMAN B, DIGNEY B. Control and learning for intelligent mobility of unmanned ground vehicles in complex terrains[C]//Proceedings of the Unmanned Ground Vehicle Technology VII. Orlando: SPIE, 2005, 5804: 203-216.
    [22]
    LI J X, DAI B, LI X H, et al. An Interaction-aware predictive motion planner for unmanned ground vehicles in dynamic street scenarios[J]. International Journal Of Robotics & Automation, 2019, 34(3): 203-215.
    [23]
    ZHANG C, BERGER C, DOZZA M. Social-IWSTCNN: A social interaction-weighted spatio- temporal convolutional neural network for pedestrian trajectory prediction in urban traffic scenarios[C]//Proceedings of the 2021 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE Press, 2021: 1515-1522.
    [24]
    YU S Y, MALAWADE A V, MUTHIRAYAN D, et al. Scene-graph augmented data-driven risk assessment of autonomous vehicle decisions[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 7941-7951. doi: 10.1109/TITS.2021.3074854
    [25]
    金立生, 郭柏苍, 谢宪毅, 等. 基于行车安全场模型的交叉口车辆控制算法[J]. 西南交通大学学报, 2022, 57(4): 753-760.

    JIN L S, GUO B C, XIE X Y, et al. Cooperative control algorithm for vehicle at intersection based on driving safety field model[J]. Journal of Southwest Jiaotong University, 2022, 57(4): 753-760 (in Chinese).
    [26]
    WANG J Q, WU J, LI Y, et al. The concept and modeling of driving safety field based on driver-vehicle-road interactions[C]//Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems. Piscataway: IEEE Press, 2014: 974-981.
    [27]
    吴剑. 考虑人-车-路因素的行车风险评价方法研究[D]. 北京: 清华大学, 2015: 17-18.

    WU J. Research on driver-vehicle-road factors considered driving risk evaluation method[D]. Beijing: Tsinghua University, 2015: 17-18 (in Chinese).
    [28]
    国家质量监督检验检疫总局, 中国国家标准化管理委员会. 水平能见度等级: GB/T 33673—2017[S]. 北京: 中国标准出版社, 2017: 1-8.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Grade of horizontal visibility: GB/T 33673—2017[S]. Beijing: Standards Press of China, 2017: 1-8 (in Chinese).
    [29]
    裴玉龙, 程国柱. 高速公路车速离散性与交通事故的关系及车速管理研究[J]. 中国公路学报, 2004, 17(1): 74-78.

    PEI Y L, CHENG G Z. Research on the relationship between discrete character of speed and traffic accident and speed management of freeway[J]. China Journal of Highway and Transport, 2004, 17(1): 74-78 (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(396) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return