Volume 50 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
SUN X Z,WU J,SHI L X,et al. Dynamic force equalization for dual redundancy electro-mechanical actuation system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1208-1218 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0466
Citation: SUN X Z,WU J,SHI L X,et al. Dynamic force equalization for dual redundancy electro-mechanical actuation system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1208-1218 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0466

Dynamic force equalization for dual redundancy electro-mechanical actuation system

doi: 10.13700/j.bh.1001-5965.2022.0466
Funds:  Fundamental Research Funds for the Central Universities Civil Aviation of University (3122020066)
More Information
  • Corresponding author: E-mail: wujiang@buaa.edu.cn
  • Received Date: 08 Jun 2022
  • Accepted Date: 10 Oct 2022
  • Available Online: 29 Apr 2024
  • Publish Date: 15 Nov 2022
  • Redundant electromechanical actuation systems are frequently utilized in flight control surface actuation systems as a result of advancements in more-electric/all-electric aircraft technology. However, a solution to the force fight brought on by actuator output asynchrony in active / active working mode is still pending. To solve this problem, a complete linear mathematical model of the system is established, the causes of dynamic force fight are analyzed, a dynamic force equalization control method based on the combined action of speed and acceleration feedforward compensation control and PID control based on force difference feedback is studied and proposed, and its equalization ability and robustness are verified. The dynamic force equalization is found to be robust against the disturbance of various system parameters and to be able to successfully minimize the dynamic force fight caused by friction, backlash, and command delay.

     

  • loading
  • [1]
    中国民用航空局. 运输类飞机适航标准: CCAR-25-R4[S]. 北京: 中国民用航空局, 2011: 129-130.

    Civil Aviation Administration of China. Airworthiness standard for transport aircraft: CCAR-25-R4[S]. Beijing: Civil Aviation Administration of China, 2011: 129-130.
    [2]
    QIAO G, LIU G, SHI Z H, et al. A review of electromechanical actuators for more/all electric aircraft systems[J]. Journal of Mechanical Engineering Science, 2018, 232(22): 4128-4151.
    [3]
    JENTINK H W. Exploitation of actuation2015 Pre-standardisation activities on power-by-wire NLR-TP-2016-162[R]. Amsterdam: NLR-Netherlands Aerospace Centre, 2016.
    [4]
    IANGRANDE P, GALASSINI A, PAPADOPOULOS S, et al. Considerations on the development of an electric drive for a secondary flight control electromechanical actuator[J]. IEEE Transactions on Industry Applications, 2019, 55(4): 3544-3554. doi: 10.1109/TIA.2019.2907231
    [5]
    DERRIEN J C, SECURITE S D. Electromechanical actuator(ema) advanced technology for flight controls[C]//Proceedings of the 28th International Congress of The Aeronautical Sciences. Brisbane: ICAS Press, 2012: 1-10.
    [6]
    张家盛, 刘波, 何晶晶. 飞机舵面余度作动系统力纷争均衡技术研究[J]. 液压与气动, 2018(6): 99-104. doi: 10.11832/j.issn.1000-4858.2018.06.019

    ZHANG J S, LIU B, HE J J. Force equalization technology of redundant actuation system for aircraft’s control surface[J]. Hydraulics & Pneumatics, 2018(6): 99-104(in Chinese). doi: 10.11832/j.issn.1000-4858.2018.06.019
    [7]
    田亮, 张岩山, 王海维. 电传飞控作动系统建模与力纷争均衡研究[J]. 西北工业大学学报, 2020, 38(3): 643-648. doi: 10.3969/j.issn.1000-2758.2020.03.024

    TIAN L, ZHANG Y S, WANG H W. Fly-by-wire actuation system modeling and force fight equalization research[J]. Journal of Northwestern Polytechnical University, 2020, 38(3): 643-648(in Chinese). doi: 10.3969/j.issn.1000-2758.2020.03.024
    [8]
    付永领, 范殿梁, 李祝锋. 非相似余度作动系统静态力均衡控制策略[J]. 北京航空航天大学学报, 2014, 40(11): 1492-1499.

    FU Y L, FAN D L, LI Z F. Static force equalization for dissimilar redundant actuator system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(11): 1492-1499(in Chinese).
    [9]
    QI H, MARE J C, FU Y. Force equalization in hybrid actuation systems[C]//Proceedings of the 7th International Conference on Fluid Power Transmission and Control. Piscataway: IEEE Press, 2009: 342-347.
    [10]
    KOWALSKI R. Force fight in parallel-redundant electro-mechanical actuation systems[C]//Proceedings of More Electric Aircraft 2017. Piscataway: IEEE Press, 2017: 1-3.
    [11]
    KOWALSKI R, WINDELBERG J, LADNER R, et al. Force fight compensation for redundant electro-mechanical flight control actuators[C]//Proceedings of the 31st Congress of the International Council of the Aeronautical Sciences, Belo Horizonte: ICAS Press, 2018: 1-7.
    [12]
    范殿梁, 付永领, 郭彦青, 等. 非相似余度作动系统动态力均衡控制策略[J]. 北京航空航天大学学报, 2015, 41(2): 234-240.

    FAN D L, FU Y L, GUO Y Q, et al. Dynamic force equalization for dissimilar redundant actuator system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2): 234-240(in Chinese).
    [13]
    WANG L J, MARÉ J C. A force equalization controller for active/active redundant actuation system involving servo-hydraulic and electro-mechanical technologies[J]. Journal of Aerospace Engineering, 2014, 228(10): 1768-1787. doi: 10.1177/0954410013504343
    [14]
    UR REHMAN W, WANG X H, CHENG Y Q, et al. Motion synchronization for the SHA/EMA hybrid actuation system by using an optimization algorithm[J]. Automatika, 2021, 62(3-4): 503-512. doi: 10.1080/00051144.2021.1989891
    [15]
    XUE Y, YAO Z Q. A way to mitigate force-fight oscillation based on pressure and position compensation for fly-by-wire flight control systems[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2020, 63(1): 1-7. doi: 10.2322/tjsass.63.1
    [16]
    孙晓哲, 杨珍书, 杨建忠, 等. 机电作动系统非指令振荡信号的故障影响分析[J]. 北京航空航天大学学报, 2018, 44(7): 1419-1429.

    SUN X Z, YANG Z S, YANG J Z, et al. Failure effect analysis of uncommand oscillation signals in electromechanical actuation system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1419-1429(in Chinese).
    [17]
    付永领, 齐海涛, 王利剑, 等. 混合作动系统的工作模式研究[J]. 航空学报, 2010, 31(6): 1177-1184.

    FU Y L, QI H T, WANG L J, et al. Research on operating modes in hybrid actuation systems[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1177-1184(in Chinese).
    [18]
    白玉轩. 基于神经网络的飞控机电作动系统传感器故障检测研究[D]. 天津: 中国民航大学, 2020: 12-13.

    BAI Y X. Sensor fault detection of flight control electromechanical actuation system based on neutral network[D]. Tianjin: Civil Aviation University of China, 2020: 12-13(in Chinese).
    [19]
    WANG L. Force equalization for active/active redundant actuation system involving servo-hydraulic and electro-mechanical technologies[D]. Toulouse: INSA, 2012: 25-26.
    [20]
    臧寿松. 机电系统中摩擦辨识与补偿方法的研究与实现[D]. 西安: 西安电子科技大学, 2012: 6-7.

    ZANG S S. Research and experiment of friction identification and compensation in mechatronic systems[D]. Xi’an : Xidian University, 2012: 6-7(in Chinese).
    [21]
    兰远锋. 电动舵机伺服系统的间隙与摩擦补偿控制[D]. 北京: 北京交通大学, 2016: 15-16.

    LAN Y F. Compensation control of electric servo systems with backlash and friction[D]. Beijing: Beijing Jiaotong University, 2016: 15-16(in Chinese).
    [22]
    李亚飞. 伺服系统摩擦补偿与控制策略研究[D]. 南京: 南京航空航天大学, 2016: 38-40.

    LI Y F. Research on friction compensation and control strategy of servo system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 38-40(in Chinese).
    [23]
    袭著燕, 路长厚, 潘伟, 等. 带有摩擦前馈补偿的伺服控制器设计的研究[J]. 组合机床与自动化加工技术, 2006(12): 33-37. doi: 10.3969/j.issn.1001-2265.2006.12.011

    XI Z Y, LU C H, PAN W, et al. Study on design of servo controller with friction feedforward compensation[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2006(12): 33-37(in Chinese). doi: 10.3969/j.issn.1001-2265.2006.12.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views(148) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return