Volume 50 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
ZHANG Z B,JING S Z,YUAN S P,et al. Robust analysis of hydrodynamic performance under variable rotation speeds[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1219-1228 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0480
Citation: ZHANG Z B,JING S Z,YUAN S P,et al. Robust analysis of hydrodynamic performance under variable rotation speeds[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1219-1228 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0480

Robust analysis of hydrodynamic performance under variable rotation speeds

doi: 10.13700/j.bh.1001-5965.2022.0480
Funds:  National Natural Science Foundation of China (12272354); Natural Science Foundation of Henan Province (222300420547); Key Scientic Research Project of Colleges and Universities in Henan Province (20A460004)
More Information
  • Corresponding author: E-mail:zebin.zhang@zzu.edu.cn
  • Received Date: 11 Jun 2022
  • Accepted Date: 15 Aug 2022
  • Available Online: 02 Sep 2022
  • Publish Date: 29 Aug 2022
  • Oil film, as the intermediate medium, offers substantial benefits for enhancing the stability and dependability of mechanical transmission systems with high rotation speeds. The high-speed bearing-rotor system is inevitably affected by environmental factors in manufacturing and operation. These factors affect the shape of the oil film, leading to changes in the performance of sliding bearing, and the actual working performance deviates from the design objectives. The high-speed dynamic pressure oil film was selected as the research object to grasp the influence of geometric parameters and rotation speeds on the fluctuation of oil film performance. Robust optimization and analysis were carried out and the robust optimization result of the oil film was extracted. The oil film pressure field of the hydrodynamic sliding bearing under various operating speeds is solved using the Computational Fluid Dynamics method in accordance with the various requirements of the transmission system. The performance properties: bearing capacity and friction power consumption are solved. The Kriging approximate model is established, and robust indices are calculated within the subspaces that are selected in the vicinity of the sample points. The non-dominated sorting genetic algorithm (NSGA-II) is used to solve the Pareto optimal solution of different objective combinations. The correlation analysis is carried out with the self-organizing maps (SOM), and the correlation characteristics between design objectives, geometric parameters, and rotation speeds are extracted. The robust optimal design is determined by analyzing the impact of the eccentricity on the robust indices in the optimized space. The results show that the proposed robust optimization method can clearly show the distribution of the robust optimality region in the design space and reduce the influence of geometrical parameters and rotation speeds on the oil film performance. The proposed method can improve the feasibility of design results and effectively promote the transition from a theoretical design to an engineering real-life practice.

     

  • loading
  • [1]
    郭红, 岑少起, 张绍林. 圆柱、圆锥动静压滑动轴承设计 [M]. 郑州: 郑州大学出版社, 2013: 260-266.

    GUO H, CEN S Q, ZHANG S L. Design of cylindrical and conical hydrostatic sliding bearings[M]. Zhengzhou: Zhengzhou University Press, 2013: 260-266 (in Chinese).
    [2]
    张直明. 滑动轴承的流体动力润滑理论 [M]. 北京: 高等教育出版社, 1986.

    ZHANG Z M. Hydrodynamic lubrication theory of sliding bearing [M]. Beijing: Higher Education Press, 1986 (in Chinese).
    [3]
    孟凡明, 隆涛, 高贵响, 等. 气穴对滑动轴承摩擦学性能影响的CFD分析[J]. 重庆大学学报, 2013, 36(7): 6-11. doi: 10.11835/j.issn.1000-582X.2013.07.002

    MENG F M, LONG T, GAO G X, et al. Study on the effect of cavitation on tribological performances of sliding bearing by CFD method[J]. Journal of Chongqing University, 2013, 36(7): 6-11 (in Chinese). doi: 10.11835/j.issn.1000-582X.2013.07.002
    [4]
    张泽斌, 李永, 陈荣尚, 等. 含气率对润滑油黏度的影响[J]. 河南科技大学学报(自然科学版), 2019, 40(2): 23-27.

    ZHANG Z B, LI Y, CHEN R S, et al. Effect of void fraction on viscosity of lubricating oil[J]. Journal of Henan University of Science and Technology (Natural Science), 2019, 40(2): 23-27 (in Chinese).
    [5]
    郭红, 夏伯乾, 孙一休. 径向动静压浮环轴承-转子系统稳定性分析[J]. 振动与冲击, 2017, 36(5): 7-11.

    GUO H, XIA B Q, SUN Y X. Stability analysis of a journal floating ring hybrid bearing-rotor system[J]. Journal of Vibration and Shock, 2017, 36(5): 7-11 (in Chinese).
    [6]
    GUO H, YANG S, ZHANG S L, et al. Influence of temperature-viscosity effect on ring-journal speed ratio and stability for a hydrodynamic floating ring bearing[J]. Industrial Lubrication and Tribology, 2019, 71(4): 540-547. doi: 10.1108/ILT-08-2018-0329
    [7]
    陈立周. 稳健设计 [M]. 北京: 机械工业出版社, 2000.

    CHEN L Z. Robust design [M]. Beijing: China Machine Press, 2000 (in Chinese).
    [8]
    LEARY S, BHASKAR A, KEANE A. Optimal orthogonal-array-based latin hypercubes[J]. Journal of Applied Statistics, 2003, 30(5): 585-598. doi: 10.1080/0266476032000053691
    [9]
    赵轲, 高正红, 黄江涛, 等. 基于PCE方法的翼型不确定性分析及稳健设计[J]. 力学学报, 2014, 46(1): 10-19.

    ZHAO K, GAO Z H, HUANG J T, et al. Uncertainty quantification and robust design of airfoil based on polynomial chaos technique[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 10-19 (in Chinese).
    [10]
    赵轲. 基于CFD的复杂气动优化与稳健设计方法研究[D]. 西安: 西北工业大学, 2015.

    ZHAO K. Research on complex aerodynamic optimization and robust design method based on CFD[D]. Xi’an: Northwestern Polytechnical University, 2015 (in Chinese).
    [11]
    FANG K T, LIN D K J, WINKER P, et al. Uniform design: Theory and application[J]. Technometrics, 2000, 42(3): 237-248. doi: 10.1080/00401706.2000.10486045
    [12]
    尚宝平, 闫富宏, 刘高峰, 等. 基于近似模型的铣削工艺参数可靠性设计优化[J]. 中国机械工程, 2019, 30(4): 480-485. doi: 10.3969/j.issn.1004-132X.2019.04.015

    SHANG B P, YAN F H, LIU G F, et al. Reliability-based design optimization of milling process parameters using approximate model[J]. China Mechanical Engineering, 2019, 30(4): 480-485 (in Chinese). doi: 10.3969/j.issn.1004-132X.2019.04.015
    [13]
    蒋琛, 邱浩波, 高亮. 随机不确定性下的可靠性设计优化研究进展[J]. 中国机械工程, 2020, 31(2): 190-205. doi: 10.3969/j.issn.1004-132X.2020.02.005

    JIANG C, QIU H B, GAO L. Research Progressesin reliability-based design optimization under aleatory uncertainties[J]. China Mechanical Engineering, 2020, 31(2): 190-205 (in Chinese). doi: 10.3969/j.issn.1004-132X.2020.02.005
    [14]
    ZHANG Z B, LI Y H. Exploration of anisotropic design space by using unified taylor-cokriging method[J]. Applied Mathematical Modelling, 2022, 110: 45-60. doi: 10.1016/j.apm.2022.05.033
    [15]
    李小刚, 程锦, 刘振宇, 等. 基于双层更新Kriging模型的机械结构动态特性稳健优化设计[J]. 机械工程学报, 2014, 50(3): 165-173. doi: 10.3901/JME.2014.03.165

    LI X G, CHENG J, LIU Z Y, et al. Robust optimization for dynamic characteristics of mechanical structures based on double renewal Kriging model[J]. Journal of Mechanical Engineering, 2014, 50(3): 165-173 (in Chinese). doi: 10.3901/JME.2014.03.165
    [16]
    张泽斌, 张鹏飞, 郭红, 等. Kriging序贯设计方法在滑动轴承优化中的应用[J]. 哈尔滨工业大学学报, 2019, 51(7): 178-183. doi: 10.11918/j.issn.0367-6234.201810147

    ZHANG Z B, ZHANG P F, GUO H, et al. Implementation of Kriging model based sequential design on the optimization of sliding bearing[J]. Journal of Harbin Institute of Technology, 2019, 51(7): 178-183 (in Chinese). doi: 10.11918/j.issn.0367-6234.201810147
    [17]
    DEB K, AGRAWAL S, PRATAP A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II [M]//Parallel Problem Solving from Nature PPSN VI. Berlin: Springer, 2000: 849-858.
    [18]
    LOPHAVEN S N, NIELSEN H B, SONDERGAARD J. DACE: A MATLAB kriging toolbox (version 2.0)[R]. Copenhagen: Technical University of Denmark, 2002.
    [19]
    HAN Z H, XU C Z, ZHANG L, et al. Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids[J]. Chinese Journal of Aeronautics, 2020, 33(1): 31-47. doi: 10.1016/j.cja.2019.05.001
    [20]
    GEISSER S. Bayesian estimation in multivariate analysis[J]. The Annals of Mathematical Statistics, 1965, 36(1): 150-159. doi: 10.1214/aoms/1177700279
    [21]
    冯泽彪, 汪建均. 考虑模型响应不确定性的稳健参数设计[J]. 控制与决策, 2019, 34(2): 233-242.

    FENG Z B, WANG J J. Multi-response robust parameter design based on uncertainty of model response[J]. Control and Decision, 2019, 34(2): 233-242 (in Chinese).
    [22]
    顾晓光, 马义中, 汪建均, 等. 多元质量特性的满意参数设计[J]. 控制与决策, 2014, 29(6): 1064-1070.

    GU X G, MA Y Z, WANG J J, et al. Satisfactory parameter design for multivariate quality characteristics[J]. Control and Decision, 2014, 29(6): 1064-1070 (in Chinese).
    [23]
    HWANG C L, YOON K. Methods for multiple attribute decision making[M]. Multiple Attribute Decision Making, Berlin: Springer, 1981: 58-191.
    [24]
    KOHONEN T. The self-organizing map[J]. Proceedings of the IEEE, 1990, 78(9): 1464-1480. doi: 10.1109/5.58325
    [25]
    张泽斌, 张鹏飞, 李瑞珍. 基于自组织映射的高维优化参变量相关性研究[J]. 西北工业大学学报, 2020, 38(3): 677-684. doi: 10.3969/j.issn.1000-2758.2020.03.028

    ZHANG Z B, ZHANG P F, LI R Z. SOM-based high-dimensional design spaces mapping for multi-objective optimization[J]. Journal of Northwestern Polytechnical University, 2020, 38(3): 677-684 (in Chinese). doi: 10.3969/j.issn.1000-2758.2020.03.028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views(226) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return