Volume 50 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
RAN G L,MA Y H,AN Z Q,et al. Study of tensile properties of laminates containing microvascular channels with different diameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1405-1415 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0490
Citation: RAN G L,MA Y H,AN Z Q,et al. Study of tensile properties of laminates containing microvascular channels with different diameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1405-1415 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0490

Study of tensile properties of laminates containing microvascular channels with different diameters

doi: 10.13700/j.bh.1001-5965.2022.0490
More Information
  • Corresponding author: E-mail:xiaoquan_cheng@buaa.edu.cn
  • Received Date: 16 Jun 2022
  • Accepted Date: 21 Aug 2022
  • Available Online: 02 Sep 2022
  • Publish Date: 29 Aug 2022
  • In view of the influence of microvascular on the mechanical properties of laminates, the tensile properties of laminates with varying diameter microvascular channels were studied. Tensile strength and stiffness of laminates with varying diameter microvascular channels were determined by experimental measurements. A refined finite element model of laminates containing microvascular channels was established, which considered the effects of resin-rich area, fiber bending, and fiber volume fraction change, and the tensile properties of laminates containing microvascular channels were analyzed and the results were verified by the experimental results. On this basis, the effects of microvascular channel orientation and diameter were investigated. The results show that when the microvascular channel is laid in a vertical ply direction, it decreases the longitudinal tensile strength of the unidirectional laminate, but the stiffness is basically unaffected. The larger the diameter of the microvascular channel, the greater the reduction of tensile strength. The structural strength of the laminate containing microvascular channels with diameters of 0.255 mm and 0.4 mm is reduced by 21.9% and 39.9%, respectively, when compared to the tensile properties of the laminate without the channels; however, its stiffness changes less than 1.4%.The damage process of laminate also changes with the microvascular channel diameter.

     

  • loading
  • [1]
    马埸浩, 杜晓渊, 胡仁伟, 等. 微脉管型自修复复合材料研究进展[J]. 高分子材料科学与工程, 2018, 34(1): 166-172.

    MA Y H, DU X Y, HU R W, et al. Development of self-healing composite materials with microvascular networks[J]. Polymer Materials Science and Engineering, 2018, 34(1): 166-172(in Chinese).
    [2]
    李元杰, 律微波, 孟宪铎. 微胶囊自修复聚合物材料的研究进展[J]. 工程塑料应用, 2005, 33(1): 68-70.

    LI Y J, LV W B, MENG X D. Research progress in self-repair polymer materials with microcapsule[J]. Engineering Plastics Application, 2005, 33(1): 68-70(in Chinese).
    [3]
    梁大开, 杨红. 采用空心光纤自诊断、自修复智能结构的研究[J]. 压电与声光, 2002, 24(4): 261-263.

    LIANG D K, YANG H. Research on self-diagnose and self-repair net in smart composite structure by hollow-center optic fiber[J]. Piezoelectrics & Acoustooptics, 2002, 24(4): 261-263(in Chinese).
    [4]
    印明勋, 齐德胜, 云庆文. 航空复合材料自修复研究进展[C]//2015年第二届中国航空科学技术大会. 北京: 中国航空学会, 2015: 185-189.

    YIN M X, QI D S, YUN Q W. Research development of self-healing aeronautical composite materials[C]//Proceedings of the 2nd China Aviation Science and Technology Conference in 2015. Beijing: Chinese Society of Aeronautics and Astronautics, 2015: 185-189(in Chinese).
    [5]
    KOUSOURAKIS A, BANNISTER M K, MOURITZ A P. Tensile and compressive properties of polymer laminates containing internal sensor cavities[J]. Composites Part A:Applied Science and Manufacturing, 2008, 39(9): 1394-1403. doi: 10.1016/j.compositesa.2008.05.003
    [6]
    KOUSOURAKIS A, MOURITZ A P, BANNISTER M K. Interlaminar properties of polymer laminates containing internal sensor cavities[J]. Composite Structures, 2006, 75(1-4): 610-618. doi: 10.1016/j.compstruct.2006.04.086
    [7]
    KOUSOURAKIS A, MOURITZ A P. The effect of self-healing hollow fibres on the mechanical properties of polymer composites[J]. Smart Materials and Structures, 2010, 19(8): 085021. doi: 10.1088/0964-1726/19/8/085021
    [8]
    HUANG C Y, TRASK R S, BOND I P. Characterization and analysis of carbon fibre-reinforced polymer composite laminates with embedded circular vasculature[J]. Journal of the Royal Society Interface, 2010, 7(49): 1229-1241. doi: 10.1098/rsif.2009.0534
    [9]
    HUANG C Y, TRASK R S, BOND I P. Analytical study of vascular networks for self-healing composite laminates[C]//Proceedings of the 17th International Conference on Composite Materials. Edinburgh: ICCM, 2009: 27-31.
    [10]
    LUTERBACHER R, TRASK R S, BOND I P. Static and fatigue tensile properties of cross-ply laminates containing vascules for self-healing applications[J]. Smart Materials and Structures, 2016, 25(1): 015003.
    [11]
    TRASK R S, BOND I P. Bioinspired engineering study of plantae vascules for self-healing composite structures[J]. Journal of the Royal Society Interface, 2010, 7(47): 921-931. doi: 10.1098/rsif.2009.0420
    [12]
    NGUYEN A T T, ORIFICI A C. Structural assessment of microvascular self-healing laminates using progressive damage finite element analysis[J]. Composites Part A:Applied Science and Manufacturing, 2012, 43(11): 1886-1894. doi: 10.1016/j.compositesa.2012.06.005
    [13]
    AL-SHAWK A, TANABI H, SABUNCUOGLU B. Investigation of stress distributions in the resin rich region and failure behavior in glass fiber composites with microvascular channels under tensile loading[J]. Composite Structures, 2018, 192: 101-114. doi: 10.1016/j.compstruct.2018.02.061
    [14]
    TANABI H, AL-SHAWK A, SABUNCUOGLU B. Stress concentrations in composites with microvascular channels[J]. Procedia Structural Integrity, 2017, 6: 56-63. doi: 10.1016/j.prostr.2017.11.009
    [15]
    ASTM. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039[S]. West Conshohocken: ASTM, 2000.

    ASTM. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039[S]. West Conshohocken: ASTM, 2000.
    [16]
    马埸浩. 含自修复微脉管层合板力学性能研究[D]. 北京: 北京航空航天大学, 2021: 87.

    MA Y H. Mechanical properties of composite laminates with self-healing microvascular networks[D]. Beijing: Beihang University, 2021: 87(in Chinese).
    [17]
    CHAMIS C C. Mechanics of composite materials: past, present, and future[J]. Journal of Composites, Technology and Research, 1989, 11(1): 3-14. doi: 10.1520/CTR10143J
    [18]
    YOUNES R, HALLAL A, FARDOUN F, et al. Comparative review study on elastic properties modeling for unidirectional composite materials[M]//HU N. Composites and their properties. London: IntechOpen, 2012, 17: 391-408.
    [19]
    HASHIN Z. Failure criteria for unidirectional fiber composite[J]. Journal of Applied Mechanics, 1980, 47(2): 329-334. doi: 10.1115/1.3153664
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(20)  / Tables(13)

    Article Metrics

    Article views(217) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return