Volume 50 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
JIANG Y F,XU X Z,XU F Q,et al. Multi-strategy fusion improved adaptive mayfly algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1416-1426 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0492
Citation: JIANG Y F,XU X Z,XU F Q,et al. Multi-strategy fusion improved adaptive mayfly algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1416-1426 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0492

Multi-strategy fusion improved adaptive mayfly algorithm

doi: 10.13700/j.bh.1001-5965.2022.0492
Funds:  National Natural Science Foundation of China (51975422)
More Information
  • Corresponding author: E-mail:xxz@whu.edu.cn
  • Received Date: 16 Jun 2022
  • Accepted Date: 23 Sep 2022
  • Available Online: 31 Oct 2022
  • Publish Date: 10 Oct 2022
  • This paper proposes the multi-strategy fusion improved adaptive mayfly algorithm (MIMA), which addresses the shortcomings of the improved mayfly algorithm, including its low adaptive ability, minimal population diversity, and poor global search performance. Firstly, Sin chaos mapping was used to initialize the mayfly population so that the population could be uniformly distributed in the solution space, which improved the initial population quality and enhanced the global search ability. Second, in order to improve the local optimal escape ability, control population density, and boost population diversity, individuals in the population were exposed to Gaussian variation and Tent chaos mapping. Then, the incomplete gamma function was introduced to reconstruct the adaptive dynamic adjustment of gravity coefficients to establish a better balance between global search and local exploitation ability, which in turn improved the convergence accuracy of the algorithm and facilitated the potential of global search to find the optimal solution. Finally, the random opposition-based learning (ROBL) strategy was adopted to enhance the global search ability, improve the convergence speed and enhance the stability. To demonstrate the efficacy and dependability of the four improvement measures, the algorithms were compared using the classical test function set and their optimization effect was examined using the Wilcoxon rank sum test. The experimental results show that compared with other algorithms, the MIMA has better searching accuracy, convergence speed, and stability.

     

  • loading
  • [1]
    RICCI F, ROKACH L, SHAPIRA B. Recommender systems handbook[M]. Berlin: Springer, 2011.
    [2]
    XUE J K, SHEN B. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
    [3]
    PANDA M, DAS B, PATI B B. Grey wolf optimization for global path planning of autonomous underwater vehicle[C]//Proceedings of the 3rd International Conference on Advanced Informatics for Computing Research. New York: ACM, 2019: 1-6.
    [4]
    YANG X S. Firefly algorithms for multimodal optimization[C]//Proceedings of the International Symposium on Stochastic Algorithms. Berlin: Springer, 2009: 1-10.
    [5]
    ZERVOUDAKIS K, TSAFARAKIS S. A mayfly optimization algorithm[J]. Computers & Industrial Engineering, 2020, 145: 106559. doi: 10.1016/j.cie.2020.106559
    [6]
    张达敏, 徐航, 王依柔, 等. 嵌入Circle映射和逐维小孔成像反向学习的鲸鱼优化算法[J]. 控制与决策, 2021, 36(5): 1173-1180.

    ZHANG D M, XU H, WANG Y R, et al. Whale optimization algorithm for embedded Circle mapping and one-dimensional oppositional learning based small hole imaging[J]. Control and Decision, 2021, 36(5): 1173-1180(in Chinese).
    [7]
    胡健, 刘祥敏, 毛伊敏, 等. 基于KD树和混沌蜉蝣优化的并行谱聚类算法[J]. 计算机集成制造系统, 2023, 29(12): 4001-4020.

    HU J, LIU X M, MAO Y M, et al. Parallel spectral clustering algorithm using KD tree and chaotic mayfly optimization algorithm[J]. Computer Integrated Manufacturing Systems, 2023, 29(12): 4001-4020(in Chinese).
    [8]
    唐延强, 李成海, 宋亚飞, 等. 自适应变异麻雀搜索优化算法[J]. 北京航空航天大学学报, 2023, 49(3):681-692.

    TANG Y Q, LI C H, SONG Y F, et al. Adaptive mutation sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(3):681-692(in Chinese).
    [9]
    王义, 张达敏, 邹诚诚. 增强全局搜索和自适应蜉蝣算法[J]. 哈尔滨工业大学学报, 2022, 54(11): 137-150.

    WANG Y, ZHANG D M, ZOU C C. Enhance global search and adaptive mayfly algorithm[J]. Journal of Harbin Institute of Technology, 2022, 54(11): 137-150(in Chinese).
    [10]
    吕鑫, 慕晓冬, 张钧, 等. 混沌麻雀搜索优化算法[J]. 北京航空航天大学学, 2021, 47(8): 1712-1720. doi: 10.13700/j.bh.1001-5965.2020.0298

    LU X, MU X D, ZHANG J, et al. Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1712-1720(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0298
    [11]
    张娜, 赵泽丹, 包晓安, 等. 基于改进的Tent混沌万有引力搜索算法[J]. 控制与决策, 2020, 35(4): 893-900.

    ZHANG N, ZHAO Z D, BAO X A, et al. Gravitational search algorithm based on improved Tent chaos[J]. Control and Decision, 2020, 35(4): 893-900(in Chinese).
    [12]
    WU K L, YANG M S. Alternative c-means clustering algorithms[J]. Pattern Recognition, 2002, 35(10): 2267-2278. doi: 10.1016/S0031-3203(01)00197-2
    [13]
    SHI Y. A modified particle swarm optimizer[C]//Proceedings of the IEEE International Conference on Evolutionary Computation. Piscataway: IEEE Press, 1998: 69-73.
    [14]
    王梦娜, 王秋萍, 王晓峰. 基于Iterative映射和单纯形法的改进灰狼优化算法[J]. 计算机应用, 2018, 38(S2): 16-20.

    WANG M N, WANG Q P, WANG X F. Improved grey wolf optimization algorithm based on Iterative mapping and simplex method[J]. Journal of Computer Applications, 2018, 38(S2): 16-20(in Chinese).
    [15]
    TIZHOOSH H R. Opposition-based learning: A new scheme for machine intelligence[C]//Proceedings of the International Conference on International Conference on Computational Intelligence for Modelling, Control & Automation. Piscataway: IEEE Press, 2005: 695-701.
    [16]
    LONG W, JIAO J, LIANG X, et al. A random opposition-based learning grey wolf optimizer[J]. IEEE Access, 2019, 7: 113810-113825.
    [17]
    邵瑞凝, 杨博, 束洪春, 等. 基于改进蜉蝣算法的光伏阵列最优重构方法[J]. 电力系统自动化, 2022, 14(11): 142-150.

    SHAO R N, YANG B, SHU H C, et al. Improved mayfly algorithm for optimal PV array reconfiguration[J]. Automation of Electric Power Systems, 2022, 14(11): 142-150(in Chinese).
    [18]
    徐焕增, 徐文倩, 孔政敏. 基于Tent混沌序列改进的蜉蝣算法及其应用[J]. 控制工程, 2022, 29(3): 435-440.

    XU H Z, XU W Q, KONG Z M. Mayfly algorithm based on Tent chaotic sequence and its application[J]. Control Engineering of China, 2022, 29(3): 435-440(in Chinese).
    [19]
    DERRAC J, GARCIA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm & Evolutionary Computation, 2011, 1(1): 3-18.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(5)

    Article Metrics

    Article views(405) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return