Volume 50 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
ZHANG C. Low-energy transfer from Earth into DRO with hybrid gravity assist and numerical continuation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1176-1186 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0494
Citation: ZHANG C. Low-energy transfer from Earth into DRO with hybrid gravity assist and numerical continuation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1176-1186 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0494

Low-energy transfer from Earth into DRO with hybrid gravity assist and numerical continuation

doi: 10.13700/j.bh.1001-5965.2022.0494
Funds:  Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences (XDA30040400); Foundation of State Key Laboratory of Space Flight Dynamics Lab (6142210200302); Youth Innovation Promotion Association, Chinese Academy of Sciences (292022000030)
More Information
  • Corresponding author: E-mail:chenzhang@csu.ac.cn
  • Received Date: 16 Jun 2022
  • Accepted Date: 19 Aug 2022
  • Available Online: 02 Sep 2022
  • Publish Date: 01 Sep 2022
  • Distant retrograde orbits (DRO) are well-known trajectory types in cislunar space, such orbits have long-term stability and low insertion cost. In cislunar space, DRO are well-known trajectory types with minimal insertion costs and long-term stability. A cislunar station deployed on DRO might be expected to deliver a crew to the moon or Mars for exploration missions in the future. For low-energy transfer from Earth into DRO, the maximum delivery mass can be achieved by utilizing a weak stability boundary (WSB) and multiple lunar gravity assist (LGA) simultaneously, but this kind of transfer is very sensitive to initial values. A novel two-level pseudo-arc continuation method was proposed to explore local solution space, and this paper aims to improve both computational and transfer efficiency when leveraging hybrid gravity assist in cislunar space. Additionally, a modified problem description with an analytical gradient is used to improve multiple shooting efficiency under a bicircular restricted four-body problem. In the numerical simulation, the minimum cost solution shows “LGA+WSB+2LGA”, where the time of flight is 123 days, the LEO launching cost is 3.125 km/s and the 2:1 DRO insertion maneuver only needs 19.7 m/s.

     

  • loading
  • [1]
    WHITLEY R, MARTINEZ R. Options for staging orbits in cislunar space[C] //Proceedings of the IEEE Aerospace Conference. Piscataway: IEEE Press, 2016: 1-9.
    [2]
    曾豪, 李朝玉, 彭坤, 等. 地月空间NRHO与DRO在月球探测中的应用研究[J]. 宇航学报, 2020, 41(7): 910-919.

    ZENG H, LI Z Y, PENG K, et al. Research on application of Earth-Moon NRHO and DRO for lunar exploration[J]. Journal of Astronautics, 2020, 41(7): 910-919 (in Chinese).
    [3]
    HÉNON M. Numerical exploration of the restricted problem[J]. Astronomy and Astrophysics, 1969(1): 223-238.
    [4]
    DEMEYER J, GURFIL P. Transfer to distant retrograde orbits using manifold theory[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5): 1261-1267. doi: 10.2514/1.24960
    [5]
    MINGOTTI G, TOPPUTO F, BERNELLI-ZAZZERA F. Transfers to distant periodic orbits around the Moon via their invariant manifolds[J]. Acta Astronautica, 2012(79): 20-32.
    [6]
    BEZROUK C, PARKER J S. Long term evolution of distant retrograde orbits in the Earth-Moon system[J]. Astrophysics and Space Science, 2017, 362(9): 176. doi: 10.1007/s10509-017-3158-0
    [7]
    LARA M. Design of distant retrograde orbits based on a higher order analytical solutiont[J]. Acta Astronautica, 2019(161): 562-578.
    [8]
    吴小婧, 曾凌川, 巩应奎. DRO计算及其在地月系中的摄动力研究[J]. 北京航空航天大学学报, 2020, 46(5): 883-892.

    WU X J, ZENG L C, GONG Y K. DRO computation and its perturbative force in the Earth-Moon system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 883-892 (in Chinese).
    [9]
    STRANGE N, LANDAU D, MCELRATH T, et al. Overview of mission design for NASA asteroid redirect robotic mission concept[C]//Proceedings of the 33rd International Electric Propulsion Conference. Washington, D. C. : NASA, 2013, 1-13.
    [10]
    DAWN T F, GUTKOWSKI J, BATCHA A, et al. Trajectory design considerations for exploration mission 1[C] // Proceedings of the Space Flight Mechanics Meeting. Reston: AIAA, 2018: 968.
    [11]
    CONTE D, DI CARLO M, HO K, et al. Earth-Mars transfers through Moon Distant Retrograde Orbits[J]. Acta Astronautica, 2018(143): 372-379.
    [12]
    WELCH C M, PARKER J S, BUXTON C. Mission considerations for transfers to a distant retrograde orbit[J]. The Journal of the Astronautical Sciences, 2015, 62(2): 101-124. doi: 10.1007/s40295-015-0039-z
    [13]
    CAPDEVILA L R, HOWELL K C. A transfer network linking Earth, Moon, and the triangular libration point regions in the Earth-Moon system[J]. Advances in Space Research, 2018, 62(7): 1826-1852. doi: 10.1016/j.asr.2018.06.045
    [14]
    BELBRUNO E A, MILLER J K. Sun-perturbed Earth-to-moon transfers with ballistic capture[J]. Journal of Guidance Control Dynamics, 1993, 16(4): 770-775. doi: 10.2514/3.21079
    [15]
    YAGASAKI K. Sun-perturbed Earth-to-Moon transfers with low energy and moderate flight time[J]. Celestial Mechanics and Dynamical Astronomy, 2004, 90(3): 197-212.
    [16]
    TOPPUTO F. On optimal two-impulse Earth-Moon transfers in a four-body model[J]. Celestial Mechanics and Dynamical Astronomy, 2013, 117(3): 279-313. doi: 10.1007/s10569-013-9513-8
    [17]
    OSHIMA K, TOPPUTO F, YANAO T. Low-energy transfers to the Moon with long transfer time[J]. Celestial Mechanics and Dynamical Astronomy, 2019, 131(1): 4. doi: 10.1007/s10569-019-9883-7
    [18]
    PARKER J S, ERSON R L. Low-energy lunar trajectory design[M]. Pasadena: John Wiley & Sons, 2014: 1-381.
    [19]
    ZHANG Z, HOU X. Transfer orbits to the Earth–Moon triangular libration points[J]. Advances in Space Research, 2015, 55(12): 2899-2913. doi: 10.1016/j.asr.2015.03.008
    [20]
    PARRISH N L, KAYSER E, UDUPA S, et al. Survey of ballistic lunar transfers to near rectilinear halo orbit[C]//Proceedings of the AAS/AIAA Astrodynamics Specialist Conference. Reston:AIAA, 2019: 1-20.
    [21]
    XU M, XU S J. Exploration of distant retrograde orbits around Moon[J]. Acta Astronautica, 2009, 65(5-6): 853-860. doi: 10.1016/j.actaastro.2009.03.026
    [22]
    TAN M H, ZHANG K, LV M B, et al. Transfer to long term distant retrograde orbits around the Moon[J]. Acta Astronautica, 2014(98): 50-63.
    [23]
    ZHANG R K, WANG Y, ZHANG C, et al. The transfers from lunar DROs to Earth orbits via optimization in the four body problem[J]. Astrophysics and Space Science, 2021, 366(6): 49. doi: 10.1007/s10509-021-03955-1
    [24]
    SCHEUERLE S T, MCCARTHY B P, HOWELL K C. Construction of ballistic lunar transfers leveraging dynamical systems techniques[C]//Proceedings of the AAS/AIAA Astrodynamics Specialist Conference. Reston: AIAA, 2020: 1-20.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(4)

    Article Metrics

    Article views(244) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return