Citation: | GENG Z T,ZHAO J Q. Design and development of virtual simulation experiment software of composite piezoelectric materials[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3377-3381 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0826 |
Composite piezoelectric materials are excellent carriers for learning piezoelectric theory, but simulation software for virtual experimental teaching of composite piezoelectric materials still needs to be developed. A software based on barium titanium oxide@polyvinylidene difluoride (BTO@PVDF) virtual simulation experiment teaching software of composite piezoelectric materials is developed. Students can investigate the properties of composites' piezoelectric response and get an understanding of basic piezoelectric theory by using the software to simulate flexible piezoelectric materials using models of porous and composite materials. With the help of the software, which integrates the entire process of material design, preparation, and characterization, creates multiple adjustable parameters, and presents the results at different levels, students can more independently and with great flexibility realize a more realistic virtual simulation of composite piezoelectric materials. The software adds video explanations, interactive questions and answers, knowledge tips and other interactions to improve the liveliness of teaching and cultivate students’ ability to think independently.
[1] |
刘洋, 汪尧进. 柔性压电材料及器件应用[J]. 硅酸盐学报, 2022, 50(3): 625-641.
LIU Y, WANG Y J. Flexible piezoelectric materials and device application[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 625-641(in Chinese).
|
[2] |
JEONG C K, BAEK C, KINGON A I, et al. Lead-free perovskite nanowire-employed piezopolymer for highly efficient flexible nanocomposite energy harvester[J]. Small, 2018, 14(19): 1704022.
|
[3] |
朱嘉林, 王丽坤, 张福学. 0-3型压电复合材料的硬球无规堆积模型[J]. 压电与声光, 2000, 22(4): 273-276.
ZHU J L, WANG L K, ZHANG F X. A model of hard sphere haphazard packing about the 0-3 piezocomposite for transducer and its effictive poling electric filed[J]. Piezoelectrics & Acoustooptics, 2000, 22(4): 273-276(in Chinese).
|
[4] |
LEWIS T J. Interfaces are the dominant feature of dielectrics at the nanometric level[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 739-753. doi: 10.1109/TDEI.2004.1349779
|
[5] |
LIU Y, YANG T N, ZHANG B, et al. Structural insight in the interfacial effect in ferroelectric polymer nanocomposites[J]. Advanced Materials, 2020, 32(49): e2005431. doi: 10.1002/adma.202005431
|
[6] |
王树彬, 韩杰才, 杜善义. 压电陶瓷/聚合物复合材料的制备工艺及其性能研究进展[J]. 功能材料, 1999, 30(2): 2-6.
WANG S B, HAN J C, DU S Y. Research progress on preparation technology and properties of piezoelectric ceramic/polymer composites[J]. Journal of Functional Materials, 1999, 30(2): 2-6(in Chinese).
|
[7] |
苏晓晓. BTO/PVDF柔性压电复合薄膜的制备及其发电机理研究[D]. 太原: 太原理工大学, 2020.
SU X X. Research on the preparation of BTO/PVDF flexible piezoelectric composite film and its generating mechanism[D]. Taiyuan: Taiyuan University of Technology, 2020(in Chinese).
|
[8] |
逯行, 朱陶, 徐晶晶, 等. 高校虚拟仿真实验教学的基本问题与趋势[J]. 现代教育技术, 2021, 31(12): 61-68.
LU H, ZHU T, XU J J, et al. Basic problems and trends of virtual simulation experiment teaching in colleges and universities[J]. Modern Educational Technology, 2021, 31(12): 61-68(in Chinese).
|
[9] |
王建华, 段建东, 姬军鹏, 等. 新工科背景下虚拟仿真实验研究与实践[J]. 中国教育信息化, 2021(22): 33-37.
WANG J H, DUAN J D, JI J P, et al. Research and practice of virtual simulation experiment under the background of new engineering[J]. The Chinese Journal of ICT in Education, 2021(22): 33-37(in Chinese).
|
[10] |
张宁, 赵毅强, 兰馗博, 等. “新工科” 背景下关于虚拟仿真实验的几点思考和建议[J]. 实验技术与管理, 2020, 37(3): 185-188.
ZHANG N, ZHAO Y Q, LAN K B, et al. Some thoughts and suggestions on virtual simulation experiment under background of “New engineering”[J]. Experimental Technology and Management, 2020, 37(3): 185-188(in Chinese).
|
[11] |
卢艳丽, 董文强, 王永欣, 等. 材料类专业虚拟仿真实验教学中心的建设与实践[J]. 实验室研究与探索, 2018, 37(11): 153-157.
LU Y L, DONG W Q, WANG Y X, et al. Exploration and practice of the virtual simulation experimental teaching center for material professional construction[J]. Research and Exploration in Laboratory, 2018, 37(11): 153-157(in Chinese).
|
[12] |
崔勇, 王秋生, 富立, 等. 基于有限元的PVDF微执行器虚拟仿真实验探索[J]. 电气电子教学学报, 2019, 41(6): 122-125.
CUI Y, WANG Q S, FU L, et al. Virtual simulation experiment design of PVDF micro-actuator based on finite element method[J]. Journal of Electrical & Electronic Education, 2019, 41(6): 122-125(in Chinese).
|
[13] |
崔勇, 富立, 刘颖异, 等. 多物理场虚拟仿真的现代检测技术实验课程探索[J]. 实验室研究与探索, 2019, 38(9): 221-223.
CUI Y, FU L, LIU Y Y, et al. Research on the experimental course of modern measurement technology based on multiple physical field’s virtual simulation[J]. Research and Exploration in Laboratory, 2019, 38(9): 221-223(in Chinese).
|
[14] |
张冬至, 童俊, 任旭虎, 等. 压电喷墨驱动器结构优化与仿真分析[J]. 实验室研究与探索, 2013, 32(3): 87-91.
ZHANG D Z, TONG J, REN X H, et al. Structure optimization and computer simulation of the piezoelectric ink-jet[J]. Research and Exploration in Laboratory, 2013, 32(3): 87-91(in Chinese).
|
[15] |
王晓敏, 高志强, 闫晋文. 国内高校材料学科虚拟仿真实验教学的发展探究[J]. 中国大学教学, 2021(3): 78-85. doi: 10.3969/j.issn.1005-0450.2021.03.017
WANG X M, GAO Z Q, YAN J W. Research on the development of virtual simulation experiment teaching of materials subject in domestic universities[J]. China University Teaching, 2021(3): 78-85(in Chinese). doi: 10.3969/j.issn.1005-0450.2021.03.017
|
[16] |
王卫国, 胡今鸿, 刘宏. 国外高校虚拟仿真实验教学现状与发展[J]. 实验室研究与探索, 2015, 34(5): 214-219. doi: 10.3969/j.issn.1006-7167.2015.05.058
WANG W G, HU J H, LIU H. Current situation and development of virtual simulation experimental teaching of overseas universities[J]. Research and Exploration in Laboratory, 2015, 34(5): 214-219(in Chinese). doi: 10.3969/j.issn.1006-7167.2015.05.058
|
[17] |
熊宏齐. 虚拟仿真实验教学助推理论教学与实验教学的融合改革与创新[J]. 实验技术与管理, 2020, 37(5): 1-4.
XIONG H Q. Promotion of reform and innovation on integration of theory teaching and experimental teaching by virtual simulation experiment teaching[J]. Experimental Technology and Management, 2020, 37(5): 1-4(in Chinese).
|
[18] |
田元, 周晓蕾, 宁国勤, 等. 虚拟仿真实验教学对学生学习效果的影响研究: 基于35项实验和准实验研究的元分析[J]. 现代教育技术, 2021, 31(8): 42-49. doi: 10.3969/j.issn.1009-8097.2021.08.005
TIAN Y, ZHOU X L, NING G Q, et al. Research on influence of virtual simulation experiment teaching on students' learning effect—A meta-analysis based on 35 experiments and quasi-experimental studies[J]. Modern Educational Technology, 2021, 31(8): 42-49(in Chinese). doi: 10.3969/j.issn.1009-8097.2021.08.005
|