Volume 50 Issue 11
Nov.  2024
Turn off MathJax
Article Contents
YUAN Y,LIU J,YU J Q,et al. Aerodynamic layout optimization design of high-speed folding-wing vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3410-3416 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0849
Citation: YUAN Y,LIU J,YU J Q,et al. Aerodynamic layout optimization design of high-speed folding-wing vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3410-3416 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0849

Aerodynamic layout optimization design of high-speed folding-wing vehicles

doi: 10.13700/j.bh.1001-5965.2022.0849
More Information
  • Corresponding author: E-mail:liujun65@dlut.edu.cn
  • Received Date: 10 Oct 2022
  • Accepted Date: 10 Mar 2023
  • Available Online: 31 Mar 2023
  • Publish Date: 30 Mar 2023
  • In order to solve the optimization design problem of the aerodynamic layout of complex high-speed folding-wing vehicles under the constraints of internal loads and external launch devices, a parametric modeling method for folding-wing vehicles based on the combination of class shape transformation (CST) and direct parameterization was proposed. In addition, a fast calculation method of viscous aerodynamic characteristics based on the rapid correction of the normal vector of the object plane was developed. The multi-objective optimization algorithm framework and optimization process of high-speed folding-wing vehicles based on Kriging-genetic algorithm (Kriging-GA) were constructed, so as to optimize the aerodynamic layout design of high-speed folding-wing vehicles. The optimization solution set under multiple objectives and constraints was obtained, which could guide the aerodynamic layout optimization design of high-speed folding-wing vehicles.

     

  • loading
  • [1]
    孙杨, 昌敏, 白俊强. 变形机翼飞行器发展综述[J]. 无人系统技术, 2021, 4(3): 65-77.

    SUN Y, CHANG M, BAI J Q. Review of morphing wing aircraft[J]. Unmanned Systems Technology, 2021, 4(3): 65-77(in Chinese).
    [2]
    叶友达. 近空间高速飞行器气动特性研究与布局设计优化[J]. 力学进展, 2009, 39(6): 683-694. doi: 10.3321/j.issn:1000-0992.2009.06.009

    YE Y D. Study on aerodynamic characteristics and design optimization for high speed near space vehicles[J]. Advances in Mechanics, 2009, 39(6): 683-694(in Chinese). doi: 10.3321/j.issn:1000-0992.2009.06.009
    [3]
    马洋, 杨涛, 张青斌. 高超声速滑翔式升力体外形设计与优化[J]. 国防科技大学学报, 2014, 36(2): 34-40. doi: 10.11887/j.cn.201402007

    MA Y, YANG T, ZHANG Q B. Configuration optimization design of hypersonic gliding lifting body[J]. Journal of National University of Defense Technology, 2014, 36(2): 34-40(in Chinese). doi: 10.11887/j.cn.201402007
    [4]
    曹特. 高超声速飞行器气动外形优化[D]. 南京: 南京航空航天大学, 2015.

    CAO T. Aerodynamic shape optimization of hypersonic vehicles[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
    [5]
    吕韵, 周进, 童明波. 常规布局飞机概念外形参数化建模研究[J]. 机械设计与制造工程, 2019, 48(11): 7-10. doi: 10.3969/j.issn.2095-509X.2019.11.002

    LYU Y, ZHOU J, TONG M B. Research on the parametric design of concept aircraft shape[J]. Machine Design and Manufacturing Engineering, 2019, 48(11): 7-10(in Chinese). doi: 10.3969/j.issn.2095-509X.2019.11.002
    [6]
    YUAN Y. Numerical simulation of dynamic deployment of the folding wing[C]//Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017: 2371.
    [7]
    刘玮, 陆宇平, 殷明. 折叠翼飞行器气动建模及变形稳定控制律设计[J]. 电子设计工程, 2014, 22(8): 1-4. doi: 10.3969/j.issn.1674-6236.2014.08.001

    LIU W, LU Y P, YIN M. Aerodynamic modeling and robust controller design for a folding wing aircraft[J]. Electronic Design Engineering, 2014, 22(8): 1-4(in Chinese). doi: 10.3969/j.issn.1674-6236.2014.08.001
    [8]
    唐伟, 张勇, 李为吉, 等. 二次曲线截面弹身的气动设计及优化[J]. 宇航学报, 2004, 25(4): 429-433. doi: 10.3321/j.issn:1000-1328.2004.04.015

    TANG W, ZHANG Y, LI W J, et al. Aerodynamic design and optimization for vehicles with conic cross section[J]. Journal of Astronautics, 2004, 25(4): 429-433(in Chinese). doi: 10.3321/j.issn:1000-1328.2004.04.015
    [9]
    LAMOUSIN H J, WAGGENSPACK N N. NURBS-based free-form deformations[J]. IEEE Computer Graphics and Applications, 1994, 14(6): 59-65. doi: 10.1109/38.329096
    [10]
    KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158. doi: 10.2514/1.29958
    [11]
    冯毅, 唐伟, 任建勋, 等. 飞行器参数化几何建模方法研究[J]. 空气动力学学报, 2012, 30(4): 546-550. doi: 10.3969/j.issn.0258-1825.2012.04.020

    FENG Y, TANG W, REN J X, et al. Parametric geometry representation method for hypersonic vehicle configuration[J]. Acta Aerodynamica Sinica, 2012, 30(4): 546-550(in Chinese). doi: 10.3969/j.issn.0258-1825.2012.04.020
    [12]
    MCDONALD R A. Interactive reconstruction of 3D models in the OpenVSP parametric geometry tool[C]//Proceedings of the 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015: 1014.
    [13]
    程锋, 唐硕, 张栋. 超声速/高超声速飞行器气动力快速估算平台设计及应用[J]. 西北工业大学学报, 2018, 36(6): 1076-1084. doi: 10.3969/j.issn.1000-2758.2018.06.007

    CHENG F, TANG S, ZHANG D. Design and applications of preliminary evaluation platform of aerodynamic forces for supersonic/hypersonic vehicles[J]. Journal of Northwestern Polytechnical University, 2018, 36(6): 1076-1084(in Chinese). doi: 10.3969/j.issn.1000-2758.2018.06.007
    [14]
    LOBBIA M A. Rapid supersonic/hypersonic aerodynamics analysis model for arbitrary geometries[J]. Journal of Spacecraft and Rockets, 2017, 54(1): 315-322. doi: 10.2514/1.A33514
    [15]
    霍霖. 复杂外形高超声速飞行器气动热快速工程估算及热响应分析[D]. 长沙: 国防科学技术大学, 2012.

    HUO L. The rapid engineering aero-heating calculation and thermal respond for complex shaped hypersonic vehicles[D]. Changsha: National University of Defense Technology, 2012(in Chinese).
    [16]
    李正洲. 考虑操稳特性的有翼再入飞行器总体多学科设计优化[D]. 南京: 南京航空航天大学, 2018.

    LI Z Z. Multidisciplinary design optimization for winged re-entry vehicles considering stability and control characteristics[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
    [17]
    麻卫峰, 王金亮, 张建鹏, 等. 一种改进法向量估算的点云特征提取[J]. 测绘科学, 2021, 46(11): 84-90.

    MA W F, WANG J L, ZHANG J P, et al. Feature extraction from point cloud based on improved normal vector[J]. Science of Surveying and Mapping, 2021, 46(11): 84-90(in Chinese).
    [18]
    WARE G M, CRUZ C I. Aerodynamic characteristics of the HL-20[J]. Journal of Spacecraft and Rockets, 1993, 30(5): 529-536. doi: 10.2514/3.25562
    [19]
    SONG W B, KEANE A J. Surrogate-based aerodynamic shape optimization of a civil aircraft engine nacelle[J]. AIAA Journal, 2007, 45(10): 2565-2574. doi: 10.2514/1.30015
    [20]
    JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492. doi: 10.1023/A:1008306431147
    [21]
    ANDERSON M, BURKHALTER J, JENKINS R. Multi-disciplinary intelligent systems approach to solid rocket motor design. I - Single and dual goal optimization[C]//Proceedings of the 37th Joint Propulsion Conference and Exhibit. Reston: AIAA, 2001: 3599.
    [22]
    刘传振, 段焰辉, 蔡晋生. 使用类别形状函数的多目标气动外形优化设计[J]. 气体物理, 2016, 1(2): 37-46.

    LIU C Z, DUAN Y H, CAI J S. Multi-objective aerodynamic shape optimization based on class and shape transformation[J]. Physics of Gases, 2016, 1(2): 37-46(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views(314) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return