Citation: | YUAN Y,LIU J,YU J Q,et al. Aerodynamic layout optimization design of high-speed folding-wing vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3410-3416 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0849 |
In order to solve the optimization design problem of the aerodynamic layout of complex high-speed folding-wing vehicles under the constraints of internal loads and external launch devices, a parametric modeling method for folding-wing vehicles based on the combination of class shape transformation (CST) and direct parameterization was proposed. In addition, a fast calculation method of viscous aerodynamic characteristics based on the rapid correction of the normal vector of the object plane was developed. The multi-objective optimization algorithm framework and optimization process of high-speed folding-wing vehicles based on Kriging-genetic algorithm (Kriging-GA) were constructed, so as to optimize the aerodynamic layout design of high-speed folding-wing vehicles. The optimization solution set under multiple objectives and constraints was obtained, which could guide the aerodynamic layout optimization design of high-speed folding-wing vehicles.
[1] |
孙杨, 昌敏, 白俊强. 变形机翼飞行器发展综述[J]. 无人系统技术, 2021, 4(3): 65-77.
SUN Y, CHANG M, BAI J Q. Review of morphing wing aircraft[J]. Unmanned Systems Technology, 2021, 4(3): 65-77(in Chinese).
|
[2] |
叶友达. 近空间高速飞行器气动特性研究与布局设计优化[J]. 力学进展, 2009, 39(6): 683-694. doi: 10.3321/j.issn:1000-0992.2009.06.009
YE Y D. Study on aerodynamic characteristics and design optimization for high speed near space vehicles[J]. Advances in Mechanics, 2009, 39(6): 683-694(in Chinese). doi: 10.3321/j.issn:1000-0992.2009.06.009
|
[3] |
马洋, 杨涛, 张青斌. 高超声速滑翔式升力体外形设计与优化[J]. 国防科技大学学报, 2014, 36(2): 34-40. doi: 10.11887/j.cn.201402007
MA Y, YANG T, ZHANG Q B. Configuration optimization design of hypersonic gliding lifting body[J]. Journal of National University of Defense Technology, 2014, 36(2): 34-40(in Chinese). doi: 10.11887/j.cn.201402007
|
[4] |
曹特. 高超声速飞行器气动外形优化[D]. 南京: 南京航空航天大学, 2015.
CAO T. Aerodynamic shape optimization of hypersonic vehicles[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
|
[5] |
吕韵, 周进, 童明波. 常规布局飞机概念外形参数化建模研究[J]. 机械设计与制造工程, 2019, 48(11): 7-10. doi: 10.3969/j.issn.2095-509X.2019.11.002
LYU Y, ZHOU J, TONG M B. Research on the parametric design of concept aircraft shape[J]. Machine Design and Manufacturing Engineering, 2019, 48(11): 7-10(in Chinese). doi: 10.3969/j.issn.2095-509X.2019.11.002
|
[6] |
YUAN Y. Numerical simulation of dynamic deployment of the folding wing[C]//Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston: AIAA, 2017: 2371.
|
[7] |
刘玮, 陆宇平, 殷明. 折叠翼飞行器气动建模及变形稳定控制律设计[J]. 电子设计工程, 2014, 22(8): 1-4. doi: 10.3969/j.issn.1674-6236.2014.08.001
LIU W, LU Y P, YIN M. Aerodynamic modeling and robust controller design for a folding wing aircraft[J]. Electronic Design Engineering, 2014, 22(8): 1-4(in Chinese). doi: 10.3969/j.issn.1674-6236.2014.08.001
|
[8] |
唐伟, 张勇, 李为吉, 等. 二次曲线截面弹身的气动设计及优化[J]. 宇航学报, 2004, 25(4): 429-433. doi: 10.3321/j.issn:1000-1328.2004.04.015
TANG W, ZHANG Y, LI W J, et al. Aerodynamic design and optimization for vehicles with conic cross section[J]. Journal of Astronautics, 2004, 25(4): 429-433(in Chinese). doi: 10.3321/j.issn:1000-1328.2004.04.015
|
[9] |
LAMOUSIN H J, WAGGENSPACK N N. NURBS-based free-form deformations[J]. IEEE Computer Graphics and Applications, 1994, 14(6): 59-65. doi: 10.1109/38.329096
|
[10] |
KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158. doi: 10.2514/1.29958
|
[11] |
冯毅, 唐伟, 任建勋, 等. 飞行器参数化几何建模方法研究[J]. 空气动力学学报, 2012, 30(4): 546-550. doi: 10.3969/j.issn.0258-1825.2012.04.020
FENG Y, TANG W, REN J X, et al. Parametric geometry representation method for hypersonic vehicle configuration[J]. Acta Aerodynamica Sinica, 2012, 30(4): 546-550(in Chinese). doi: 10.3969/j.issn.0258-1825.2012.04.020
|
[12] |
MCDONALD R A. Interactive reconstruction of 3D models in the OpenVSP parametric geometry tool[C]//Proceedings of the 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015: 1014.
|
[13] |
程锋, 唐硕, 张栋. 超声速/高超声速飞行器气动力快速估算平台设计及应用[J]. 西北工业大学学报, 2018, 36(6): 1076-1084. doi: 10.3969/j.issn.1000-2758.2018.06.007
CHENG F, TANG S, ZHANG D. Design and applications of preliminary evaluation platform of aerodynamic forces for supersonic/hypersonic vehicles[J]. Journal of Northwestern Polytechnical University, 2018, 36(6): 1076-1084(in Chinese). doi: 10.3969/j.issn.1000-2758.2018.06.007
|
[14] |
LOBBIA M A. Rapid supersonic/hypersonic aerodynamics analysis model for arbitrary geometries[J]. Journal of Spacecraft and Rockets, 2017, 54(1): 315-322. doi: 10.2514/1.A33514
|
[15] |
霍霖. 复杂外形高超声速飞行器气动热快速工程估算及热响应分析[D]. 长沙: 国防科学技术大学, 2012.
HUO L. The rapid engineering aero-heating calculation and thermal respond for complex shaped hypersonic vehicles[D]. Changsha: National University of Defense Technology, 2012(in Chinese).
|
[16] |
李正洲. 考虑操稳特性的有翼再入飞行器总体多学科设计优化[D]. 南京: 南京航空航天大学, 2018.
LI Z Z. Multidisciplinary design optimization for winged re-entry vehicles considering stability and control characteristics[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018(in Chinese).
|
[17] |
麻卫峰, 王金亮, 张建鹏, 等. 一种改进法向量估算的点云特征提取[J]. 测绘科学, 2021, 46(11): 84-90.
MA W F, WANG J L, ZHANG J P, et al. Feature extraction from point cloud based on improved normal vector[J]. Science of Surveying and Mapping, 2021, 46(11): 84-90(in Chinese).
|
[18] |
WARE G M, CRUZ C I. Aerodynamic characteristics of the HL-20[J]. Journal of Spacecraft and Rockets, 1993, 30(5): 529-536. doi: 10.2514/3.25562
|
[19] |
SONG W B, KEANE A J. Surrogate-based aerodynamic shape optimization of a civil aircraft engine nacelle[J]. AIAA Journal, 2007, 45(10): 2565-2574. doi: 10.2514/1.30015
|
[20] |
JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4): 455-492. doi: 10.1023/A:1008306431147
|
[21] |
ANDERSON M, BURKHALTER J, JENKINS R. Multi-disciplinary intelligent systems approach to solid rocket motor design. I - Single and dual goal optimization[C]//Proceedings of the 37th Joint Propulsion Conference and Exhibit. Reston: AIAA, 2001: 3599.
|
[22] |
刘传振, 段焰辉, 蔡晋生. 使用类别形状函数的多目标气动外形优化设计[J]. 气体物理, 2016, 1(2): 37-46.
LIU C Z, DUAN Y H, CAI J S. Multi-objective aerodynamic shape optimization based on class and shape transformation[J]. Physics of Gases, 2016, 1(2): 37-46(in Chinese).
|