YU Z,ZHANG Z N. Traffic situation orientation and implementation method in terminal areas[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3894-3902 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0929
Citation: YU Z,ZHANG Z N. Traffic situation orientation and implementation method in terminal areas[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3894-3902 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0929

Traffic situation orientation and implementation method in terminal areas

doi: 10.13700/j.bh.1001-5965.2022.0929
Funds:  National Key Research and Development Program of China (2020YFB1600103); Key Projects of the Civil Aviation Joint Fund of the National Natural Science Foundation of China (2233209)
More Information
  • Corresponding author: E-mail:zzhaoning@263.net
  • Received Date: 17 Nov 2022
  • Accepted Date: 26 Mar 2023
  • Available Online: 07 Apr 2023
  • Publish Date: 03 Apr 2023
  • The research on traffic situation awareness technology in terminal areas has made some achievements, but there is no clear method to optimize traffic situation in terminal areas with the help of this technology. In this paper, the concept of situation orientation in terminal areas was proposed, and the key technologies to achieve situation orientation were divided into three categories and elaborated respectively. Then, based on the traditional slot allocation model, a two-stage slot allocation mechanism was established by adding airlines’ preferences. In the first stage, a fair reference schedule was constructed for each airline; in the second stage, the reference schedule was adjusted to satisfy as many requests as possible from these airlines’ regarding the displacement of allocation in the schedule. The results of the example show that the schedule obtained according to the proposed slot allocation mechanism not only ensures fairness but also improves the acceptability of the airlines, and the positive effect of the mechanism on the traffic situation in busy terminal areas is analyzed.

     

  • [1]
    张兆宁, 余洲. 基于态势感知的滑行路径优化算法[J]. 科学技术与工程, 2022, 22(4): 1693-1698. doi: 10.3969/j.issn.1671-1815.2022.04.051

    ZHANG Z N, YU Z. Taxiing route optimization algorithm based on situation awareness[J]. Science Technology and Engineering, 2022, 22(4): 1693-1698 (in Chinese). doi: 10.3969/j.issn.1671-1815.2022.04.051
    [2]
    马玲, 刘韦廷, 王航臣. 基于交叉点复杂度的空域通行能力优化方法[J]. 科学技术与工程, 2022, 22(24): 10796-10804. doi: 10.3969/j.issn.1671-1815.2022.24.054

    MA L, LIU W T, WANG H C. Optimization of airspace capacity based on intersection complexity[J]. Science Technology and Engineering, 2022, 22(24): 10796-10804 (in Chinese). doi: 10.3969/j.issn.1671-1815.2022.24.054
    [3]
    乐美龙, 吴宪晟, 胡钰明. 基于滚动时域控制的多路径进场航班排序优化[J]. 北京航空航天大学学报, 2023, 49(12): 3222-3229.

    LE M L, WU X S, HU Y M. Arrival flights optimal sequencing with multi-path selection based on rolling horizon control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(12): 3222-3229(in Chinese).
    [4]
    CECEN R K, CETEK C, KAYA O. Aircraft sequencing and scheduling in TMAs under wind direction uncertainties[J]. The Aeronautical Journal, 2020, 124(1282): 1896-1912.
    [5]
    SANDAMALI G G N, SU R, SUDHEERA K L K, et al. A safety-aware real-time air traffic flow management model under demand and capacity uncertainties[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 8615-8628. doi: 10.1109/TITS.2021.3083964
    [6]
    OKTAL H, YAMAN K, KASıMBEYLI R. A mathematical programming approach to optimum airspace sectorisation problem[J]. Journal of Navigation, 2020, 73(3): 599-612. doi: 10.1017/S0373463319000833
    [7]
    王守相, 梁栋, 葛磊蛟. 智能配电网态势感知和态势利导关键技术[J]. 电力系统自动化, 2016, 40(12): 2-8. doi: 10.7500/AEPS20160509003

    WANG S X, LIANG D, GE L J. Key technologies of situation awareness and orientation for smart distribution systems[J]. Automation of Electric Power Systems, 2016, 40(12): 2-8 (in Chinese). doi: 10.7500/AEPS20160509003
    [8]
    中国民用航空局. 机场协同决策(A-CDM)实施规范(试行): IB-TM-2018-0068[S]. 北京: 中国民用航空局, 2018.

    Civil Aviation Administration of China. Airport collaborative decision making standard(to try out): IB-TM-2018-0068[S]. Beijing: Civil Aviation Administration of China, 2018.
    [9]
    孙佳. 聚焦民航现实问题前瞻行业未来发展:未来民航研究院发展思考[J]. 民航管理, 2022(8): 23-27.

    SUN J. Focusing on realistic issues of civil aviation and forecasting the industry's development: Thoughts on the development of the future civil aviation research institute[J]. Civil Aviation Management, 2022(8): 23-27(in Chinese).
    [10]
    陈欣, 张珍, 邱瑞, 等. 基于动态博弈的补贴模式对机场群航线网络结构的影响研究[J]. 四川大学学报(自然科学版), 2022, 59(5): 195-201.

    CHEN X, ZHANG Z, QIU R, et al. Research on the impact of subsidization on the airline networks of multi-airport systems based on dynamic game theory[J]. Journal of Sichuan University (Natural Science Edition), 2022, 59(5): 195-201 (in Chinese).
    [11]
    WONG C S Y, SUNDARAM S, SUNDARARAJAN N. CDAS: A cognitive decision-making architecture for dynamic airspace sectorization for efficient operations[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(5): 1659-1668. doi: 10.1109/TITS.2018.2833151
    [12]
    WONG C S Y, SURESH S, SUNDARARAJAN N. A rolling horizon optimization approach for dynamic airspace sectorization[J]. IFAC Journal of Systems and Control, 2020, 11: 100076. doi: 10.1016/j.ifacsc.2020.100076
    [13]
    PRAKASH R, PIPLANI R, DESAI J. An optimal data-splitting algorithm for aircraft sequencing on two runways[J]. Transportation Research Part C: Emerging Technologies, 2021, 132: 103403. doi: 10.1016/j.trc.2021.103403
    [14]
    LI Y J, CLARKE J P, DEY S S. Using submodularity within column generation to solve the flight-to-gate assignment problem[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: 103217. doi: 10.1016/j.trc.2021.103217
    [15]
    RIBEIRO N A, JACQUILLAT A, ANTUNES A P, et al. An optimization approach for airport slot allocation under IATA guidelines[J]. Transportation Research Part B: Methodological, 2018, 112: 132-156. doi: 10.1016/j.trb.2018.04.005
    [16]
    WALTERT M, WICKI J, JIMENEZ PEREZ E, et al. Ratio-based design hour determination for airport passenger terminal facilities[J]. Journal of Air Transport Management, 2021, 96: 102125. doi: 10.1016/j.jairtraman.2021.102125
    [17]
    JIANG Y, ZOGRAFOS K G. A decision making framework for incorporating fairness in allocating slots at capacity-constrained airports[J]. Transportation Research Part C: Emerging Technologies, 2021, 126: 103039.
    [18]
    YAN C W, SWAROOP P, BALL M O, et al. Majority judgment over a convex candidate space[J]. Operations Research Letters, 2019, 47(4): 317-325. doi: 10.1016/j.orl.2019.04.009
    [19]
    乐美龙, 王婷婷, 吴聪聪. 基于改进的GRASP算法的飞机优化恢复研究[J]. 江苏科技大学学报(自然科学版), 2013, 27(2): 166-170.

    LE M L, WANG T T, WU C C. Study on aircrafts optimal recovery based on improved GRASP algorithm[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2013, 27(2): 166-170 (in Chinese).
    [20]
    何坚, 果红艳, 姚远, 等. 基于有效中转时间预测的不正常航班恢复技术[J]. 北京航空航天大学学报, 2022, 48(3): 384-393.

    HE J, GUO H Y, YAO Y, et al. Irregular flight recovery technique based on accurate transit time prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 384-393 (in Chinese).
    [21]
    田文, 杨帆, 尹嘉男, 等. 航路时空资源分配的多目标优化方法[J]. 交通运输工程学报, 2020, 20(6): 218-226.

    TIAN W, YANG F, YIN J N, et al. Multi-obj ective optimization method of air route space-time resources allocation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 218-226 (in Chinese).
    [22]
    亓尧, 王瑛, 梁颖, 等. 不确定容量下时隙分配问题两阶段规划模型[J]. 北京航空航天大学学报, 2019, 45(9): 1747-1756.

    QI Y, WANG Y, LIANG Y, et al. Two-stage programming model for time slot allocation problem under uncertain capacity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1747-1756 (in Chinese).
    [23]
    田勇, 李永庆, 万莉莉, 等. 基于市场机制的地面等待时隙分配方法[J]. 系统工程理论与实践, 2014, 34(6): 1614-1619. doi: 10.12011/1000-6788(2014)6-1614

    TIAN Y, LI Y Q, WAN L L, et al. Slot allocation based on market mechanism in ground holding policy[J]. Systems Engineering-Theory & Practice, 2014, 34(6): 1614-1619 (in Chinese). doi: 10.12011/1000-6788(2014)6-1614
    [24]
    严俊, 唐小卫, 吴桐水. 自主取消航班的协同式时隙二次指派方法[J]. 哈尔滨工业大学学报, 2013, 45(3): 107-111. doi: 10.11918/j.issn.0367-6234.2013.03.020

    YAN J, TANG X W, WU T S. Collaborative slot secondary assignment method for autonomous flight cancellation[J]. Journal of Harbin Institute of Technology, 2013, 45(3): 107-111 (in Chinese). doi: 10.11918/j.issn.0367-6234.2013.03.020
    [25]
    RIBEIRO N A, JACQUILLAT A, ANTUNES A P. A large-scale neighborhood search approach to airport slot allocation[J]. Transportation Science, 2019, 53(6): 1772-1797. doi: 10.1287/trsc.2019.0922
    [26]
    RIBEIRO N A, JACQUILLAT A, ANTUNES A P, et al. Improving slot allocation at Level 3 airports[J]. Transportation Research Part A: Policy and Practice, 2019, 127: 32-54. doi: 10.1016/j.tra.2019.06.014
    [27]
    徐肖豪, 王飞. 地面等待策略中的时隙分配模型与算法研究[J]. 航空学报, 2010, 31(10): 1993-2003.

    XU X H, WANG F. Research on slot allocation models and algorithms in ground holding policy[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10): 1993-2003 (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views(504) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return