LI K Y,WANG Y Y,ZHU T Y,et al. Coreference resolution based on graph structure and multitask learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3825-3833 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0941
Citation: LI K Y,WANG Y Y,ZHU T Y,et al. Coreference resolution based on graph structure and multitask learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3825-3833 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0941

Coreference resolution based on graph structure and multitask learning

doi: 10.13700/j.bh.1001-5965.2022.0941
Funds:  Technology Project of Big Data Center of State Grid Corporation of China (SGSJ0000YFJS2200066)
More Information
  • Corresponding author: E-mail:kaiyang2@163.com
  • Received Date: 24 Nov 2022
  • Accepted Date: 29 May 2023
  • Available Online: 10 Jul 2023
  • Publish Date: 06 Jul 2023
  • Coreference resolution is an important task in the domain of natural language processing. Learning effective referential feature representation is a core problem of coreference resolution. It is ineffective to reflect the internal relationships between the information, such as named entities in text fragments and coreference pairs, because the majority of current research views the identification of reference text fragments and the prediction of coreference relationships as two stages of learning. This research proposes a new model of coreference resolution based on graph structure and multitask learning. It combines sequence semantics and structure information to learn referential feature vectors. A multitask learning framework is used to combine the two tasks of coreference resolution and named entity recognition. The two tasks, named entity recognition and coreference resolution, can learn from each other and get better at each other by sharing parameters in the underlying network. Extensive experiments are conducted to verify the superior performance of the proposed model.

     

  • [1]
    DODDINGTON G R, MITCHELL A, PRZYBOCKI M A, et al. The automatic content extraction (ACE) program-tasks, data, and evaluation[C]//Proceedings of the International Conference on Language Resources and Evaluation. Brussels: European Language Resources Association, 2004: 837-840.
    [2]
    HOBBS J R. Resolving pronoun references[J]. Lingua, 1978, 44(4): 311-338. doi: 10.1016/0024-3841(78)90006-2
    [3]
    GE N, HALE J, CHARNIAK E. A statistical approach to anaphora resolution[C]//Proceedings of the 6th Workshop on Very Large Corpora. Stroudsbury: Association for Computational Linguistics, 1998: 161-170.
    [4]
    ZHENG J P, CHAPMAN W W, MILLER T A, et al. A system for coreference resolution for the clinical narrative[J]. Journal of the American Medical Informatics Association, 2012, 19(4): 660-667. doi: 10.1136/amiajnl-2011-000599
    [5]
    ZHANG R, DOS SANTOS C N, YASUNAGA M, et al. Neural coreference resolution with deep biaffine attention by joint mention detection and mention clustering[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2018: 2450-2355.
    [6]
    LEE K, HE L H, ZETTLEMOYER L. Higher-order coreference resolution with coarse-to-fine inference[EB/OL]. (2018-04-15)[2022-08-01].
    [7]
    JOSHI M, LEVY O, WELD D S, et al. BERT for coreference resolution: Baselines and analysis[EB/OL]. (2019-08-24)[2022-08-01].
    [8]
    LAPPIN S, LEASS H J. An algorithm for pronominal anaphora resolution[J]. Computational Linguistics, 1994, 20(4): 535-561.
    [9]
    DAGAN I, ITAI A. Automatic acquisition of constraints for the resolution of anaphoric references and syntactic ambiguities[C]//Proceedings of the 28th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 1990: 122-129.
    [10]
    CLARK K, MANNING C D. Improving coreference resolution by learning entity-level distributed representations[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2016: 1231-1241.
    [11]
    LEE K, HE L, LEWIS M, et al. End-to-end neural coreference resolution[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsbury: Association for Computational Linguistics, 2017: 561-570.
    [12]
    WU W, WANG F, YUAN A, et al. CorefQA: Coreference resolution as query-based span prediction[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsbury: Association for Computational Linguistics, 2020: 6953-6963.
    [13]
    LUAN Y, WADDEN D, HE L H, et al. A general framework for information extraction using dynamic span graphs[EB/OL]. (2019-05-05)[2022-08-01].
    [14]
    GANDHI N, FIELD A, TSVETKOV Y. Improving span representation for domain-adapted coreference resolution[EB/OL]. (2021-09-20)[2022-08-01].
    [15]
    付健, 孔芳. 融入结构化信息的端到端中文指代消解[J]. 计算机工程, 2020, 46(1): 45-51.

    FU J, KONG F. End to end Chinese coreference resolution with structural information[J]. Computer Engineering, 2020, 46(1): 45-51(in Chinese).
    [16]
    AL-RFOU R, PEROZZI B, SKIENA S. Polyglot: Distributed word representations for multilingual NLP[EB/OL]. (2013-07-05)[2022-08-01].
    [17]
    JIANG F, COHN T. Incorporating syntax and semantics in coreference resolution with heterogeneous graph attention network[C]// Proceedings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2021: 1584-1591.
    [18]
    HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. (2015-08-09)[2022-08-01].
    [19]
    LIU Y H, OTT M, GOYAL N, et al. RoBERTa: A robustly optimized BERT pretraining approach[EB/OL]. (2019-07-26)[2022-08-01].
    [20]
    LI J, WANG X, TU Z P, et al. On the diversity of multi-head attention[J]. Neurocomputing, 2021, 454: 14-24. doi: 10.1016/j.neucom.2021.04.038
    [21]
    HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 2261-2269.
    [22]
    LAFFERTY J, MCCALLUM A, PEREIRA F. Conditional random fields: Probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the Eighteenth International Conference on Machine Learning. Williamstown: Morgan Kaufmann, 2001: 282-289.
    [23]
    RAM R V S, AKILANDESWARI A, DEVI S L. Linguistic features for named entity recognition using CRFs[C]//Proceedings of the International Conference on Asian Language Processing. Piscataway: IEEE Press, 2010: 158-161.
    [24]
    AUGENSTEIN I, DAS M, RIEDEL S, et al. SemEval 2017 task 10: ScienceIE-extracting keyphrases and relations from scientific publications[EB/OL]. (2017-04-10)[2022-08-01].
    [25]
    GÁBOR K, BUSCALDI D, SCHUMANN A K, et al. SemEval2018 task 7: Semantic relation extraction and classification in scientific papers[C]//Proceedings of the 12th International Workshop on Semantic Evaluation. Stroudsburg: Association for Computational Linguistics, 2018: 679-688.
    [26]
    MA X Z, HOVY E. End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[EB/OL]. (2016-03-04)[2022-08-01].
    [27]
    ZHOU R J, HU Q, WAN J, et al. WCL-BBCD: A contrastive learning and knowledge graph approach to named entity recognition[EB/OL]. (2022-03-14)[2022-08-01].
  • Relative Articles

    [1]QIAN P F,QIN G L,CHEN Q L,et al. A recognition method of radio fuze signal based on supervised contrastive learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):953-961 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0128.
    [2]HAN H,MENG T T. Aspect sentiment triple extraction for grammar-weighted graph text[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):409-418 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0443.
    [3]ZHANG Y T,LI Q Y,LIU S K. Tabular subordination relation extraction based on graph convolutional networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1308-1315 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0382.
    [4]DENG Yupeng, GUO Fang, WANG Rong, SONG Zhenfeng. A referring image segmentation method based on bidirectional vision-language interaction module[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0462
    [5]HAI Chao, TIAN Xin, ZHANG Hong, TAN Da-long, HE Yi-xin, MENG Fan-yong, YANG Min. A Deep Learning-Based Dual-Domain Information Method for CT Metal Artifact Reduction[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0753
    [6]TANG Rong-chuan, XU Qiu-cheng, TANG Wen-yi, ZHAI Fei-fei, ZHOU Yu. Multilingual knowledge graph completion without aligned entity pairs[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0709
    [7]ZOU Y B,LI T,CHEN M,et al. Indoor spatial layout estimation model based on multi-task supervised learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3327-3337 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0834.
    [8]JI X,WU T X,WANG H G,et al. Attribute aggregation entity alignment based on multi-channel graph neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2791-2799 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0703.
    [9]YANG Rong-tai, SHAO Yu-bin, DU Qing-zhi, LONG Hua, QI Yu-ting, ZHANG Feng. Few-shot entity linking prediction based on Graph-Transformer network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0023
    [10]NIU G C,WANG X N. A multi-task traffic scene detection model based on cross-attention[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1491-1499 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0610.
    [11]WU T X,JI X,WANG H G,et al. Relation extraction based on fusion of graph structure and sequence features[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2763-2771 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0706.
    [12]Xu Haoran, Xiang Yang, Ding Ling. Chinese Named Entity Recognition Method Based on Knowledge Enhancement from Large Language Models and Multi-feature Fusion[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0421
    [13]JI X,WU T X,YU T,et al. Power text information extraction based on multi-task learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2461-2469 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0683.
    [14]RAN Hua-ming. Airborne sensor multi-task scheduling algorithm based on slide time window[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0488
    [15]HUANG Jun, FAN Hao-dong, HONG Xu-dong, LI Xue. Semantic information guided multi-label image classification[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0382
    [16]LI C,HE Y Z,HU Y. Characteristic model control of nutation target contact detumbling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2977-2988 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0798.
    [17]NI Wen-kai, PENG Shu-fan, DU Yan-hui. Identification of induced information for personalized recommendations based on knowledge graph[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0475
    [18]KE Zhi-jie, XU Guo-ning, CAI Rong, LI Yong-xiang, YANG Yan-chu. Optimization of Multitask Scheduling for Swarm UAV System with Charging Platform[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022.0414
    [19]LI Hui, ZHANG Xiaowei, ZHAO Xinpeng, LU Xinyu. Multi-label cooperative learning for cross domain person re-identification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(8): 1534-1542. doi: 10.13700/j.bh.1001-5965.2021.0600
    [20]JING Xin, WANG Huafeng, LIU Qianfeng, LUO Siwu, ZHANG Fan. Named entity recognition in nuclear power field based on ELMo-GCN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2556-2565. doi: 10.13700/j.bh.1001-5965.2021.0155
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 26.6 %FULLTEXT: 26.6 %META: 70.8 %META: 70.8 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.8 %其他: 7.8 %上海: 1.3 %上海: 1.3 %东京: 0.3 %东京: 0.3 %中山: 0.3 %中山: 0.3 %北京: 5.4 %北京: 5.4 %十堰: 0.3 %十堰: 0.3 %南昌: 0.3 %南昌: 0.3 %合肥: 0.3 %合肥: 0.3 %哥伦布: 0.5 %哥伦布: 0.5 %嘉兴: 0.8 %嘉兴: 0.8 %天津: 0.8 %天津: 0.8 %安顺: 0.3 %安顺: 0.3 %宣城: 0.5 %宣城: 0.5 %常州: 0.3 %常州: 0.3 %常德: 0.3 %常德: 0.3 %广州: 0.5 %广州: 0.5 %张家口: 2.8 %张家口: 2.8 %成都: 0.8 %成都: 0.8 %扬州: 1.0 %扬州: 1.0 %无锡: 1.6 %无锡: 1.6 %杭州: 0.3 %杭州: 0.3 %武汉: 0.3 %武汉: 0.3 %沈阳: 0.5 %沈阳: 0.5 %洛阳: 0.3 %洛阳: 0.3 %深圳: 6.7 %深圳: 6.7 %温州: 0.5 %温州: 0.5 %湖州: 0.3 %湖州: 0.3 %漯河: 3.4 %漯河: 3.4 %石家庄: 0.8 %石家庄: 0.8 %芒廷维尤: 1.6 %芒廷维尤: 1.6 %芝加哥: 0.5 %芝加哥: 0.5 %西宁: 32.0 %西宁: 32.0 %西安: 0.3 %西安: 0.3 %诺沃克: 3.1 %诺沃克: 3.1 %运城: 0.5 %运城: 0.5 %邯郸: 0.8 %邯郸: 0.8 %郑州: 21.4 %郑州: 21.4 %重庆: 0.3 %重庆: 0.3 %长沙: 0.5 %长沙: 0.5 %青岛: 0.3 %青岛: 0.3 %其他上海东京中山北京十堰南昌合肥哥伦布嘉兴天津安顺宣城常州常德广州张家口成都扬州无锡杭州武汉沈阳洛阳深圳温州湖州漯河石家庄芒廷维尤芝加哥西宁西安诺沃克运城邯郸郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(8)

    Article Metrics

    Article views(272) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return