Citation: | WEN Y F,ZHANG W Q,HAO S S. Investigation on unsteady flow characteristics of a supersonic inlet with exit blocked[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):772-783 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0142 |
Cavity flow oscillation phenomenon would occur during the transiton of ramjet with the inlet entrance unobstructed while its exit blocked. As the flow oscillating dramatically, the flight vehicle would face a crisis of instability attitude controlling and structural failure. Due to the problem of fluctuation flow, the unsteady flow characteristics of a supersonic twin-duct inlet with its exit blocked were studied by wind tunnel test and numerical simulation. The effects of the model scale, Mach number of the incoming flow, and boundary layer suction on the characteristics of oscillating pressure of the inlet were acquired. The results indicate that periodic oscillating flow is observed when the exit of the inlet is blocked. The frequency of the oscillating flow is positively correlated to the acoustic velocity of the incoming flow but inversely correlated to the length of the inlet. The oscillating pressure peak is found to approximate the total pressure value of the incoming flow, and it raises obviously with the increment of the Mach number of the incoming flow. The unsteady flow of the inlet with its exit blocked is approximately simulated by the numerical method adopted in this paper, and the numerical simulation result agrees well with that of the wind tunnel test. Furthermore, unsteady simulation results show that the inlet’s pressure is relieved in the duration of flow oscillation by conducting the boundary layer suction method at the internal contracted region, which results in a shock-on-lip state during the backward movement of the shock wave system. A rise of captured flow coefficient is observed when compared to the inlet without boundary layer suction, leading to a 49.47% increase of amplitude peak while 21.78% descending of the frequency for the oscillating pressure.
[1] |
NISHIZAWA U, KAMEDA M, WATANABE Y, et al. Computational simulation of shock oscillation around a supersonic air-intake[C]//Proceedings of the 36th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2006.
|
[2] |
NAKAYAMA T, SATO T, AKATSUKA M, et al. Investigation on shock oscillation phenomenon in a supersonic air inlet[C]//Proceedings of the 41st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011.
|
[3] |
LU P J, JAIN L T. Numerical investigation of inlet buzz flow[J]. Journal of Propulsion and Power, 1998, 14(1): 90-100. doi: 10.2514/2.5254
|
[4] |
FUJIWARA H, MURAKAMI A, WATANABE Y. Numerical analysis on shock oscillation of two-dimensional external compression intakes[C]//Proceedings of the 32nd AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2002.
|
[5] |
王玉峰, 杨宝娥. 超声速进气道喘振的机理研究[J]. 火箭推进, 2008, 34(1): 17-22. doi: 10.3969/j.issn.1672-9374.2008.01.004
WANG Y F, YANG B E. Study of the buzz mechanism of supersonic inlets[J]. Journal of Rocket Propulsion, 2008, 34(1): 17-22(in Chinese). doi: 10.3969/j.issn.1672-9374.2008.01.004
|
[6] |
OH J Y, MA F H, HSIEH S Y, et al. Interactions between shock and acoustic waves in a supersonic inlet diffuser[J]. Journal of Propulsion and Power, 2005, 21(3): 486-495. doi: 10.2514/1.9671
|
[7] |
刘占生, 张云峰, 田新. 冲压发动机超声速进气道流动自激振荡研究[J]. 航空动力学报, 2008, 23(9): 1595-1602.
LIU Z S, ZHANG Y F, TIAN X. Research on self-excited oscillation flows in inlet of ramjet[J]. Journal of Aerospace Power, 2008, 23(9): 1595-1602(in Chinese).
|
[8] |
SAUNDERS J, KEITH T. Results from computational analysis of a mixed compression supersonic inlet[C]//Proceedings of the 27th Joint Propulsion Conference. Reston: AIAA, 1991.
|
[9] |
SAJBEN M, BOGAR T J, KROUTIL J C. Experimental study of flows in a two-dimensional inlet model[J]. Journal of Propulsion and Power, 1985, 1(2): 109-117. doi: 10.2514/3.22767
|
[10] |
李强, 刘佩进, 李江, 等. 冲压发动机助推段压强振荡现象数值分析[J]. 推进技术, 2008, 29(6): 673-676. doi: 10.3321/j.issn:1001-4055.2008.06.007
LI Q, LIU P J, LI J, et al. Numerical simulation of boosting stage pressure oscillation in ramjet[J]. Journal of Propulsion Technology, 2008, 29(6): 673-676(in Chinese). doi: 10.3321/j.issn:1001-4055.2008.06.007
|
[11] |
孙振华, 吴催生. 冲压发动机加速阶段进气道内动态特性[J]. 固体火箭技术, 2011, 34(3): 285-289. doi: 10.3969/j.issn.1006-2793.2011.03.005
SUN Z H, WU C S. Dynamic characteristics in ramjet inlet during acceleration phase[J]. Journal of Solid Rocket Technology, 2011, 34(3): 285-289(in Chinese). doi: 10.3969/j.issn.1006-2793.2011.03.005
|
[12] |
白晓征, 刘君, 郭正, 等. 冲压发动机进气道压力振荡过程的数值研究[J]. 推进技术, 2008, 29(5): 562-565. doi: 10.3321/j.issn:1001-4055.2008.05.010
BAI X Z, LIU J, GUO Z, et al. Numerical simulation of pressure oscillation in ramjet inlet[J]. Journal of Propulsion Technology, 2008, 29(5): 562-565(in Chinese). doi: 10.3321/j.issn:1001-4055.2008.05.010
|
[13] |
刘志伟, 马高建, 崔金平. 附面层吸除对二元混压式进气道起动影响分析[J]. 弹箭与制导学报, 2009, 29(3): 149-152. doi: 10.3969/j.issn.1673-9728.2009.03.044
LIU Z W, MA G J, CUI J P. Influence of boundary layers bleed sew to start[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(3): 149-152(in Chinese). doi: 10.3969/j.issn.1673-9728.2009.03.044
|
[14] |
贺永杰, 马高建, 刘志伟. 通过附面层泄除提高定几何混压式进气道性能的方法研究[J]. 航空兵器, 2010(2): 28-31. doi: 10.3969/j.issn.1673-5048.2010.02.007
HE Y J, MA G J, LIU Z W. Study on improving the performance of mixed-compression inlet with fixed-geometry through boundary-layer bleed[J]. Aero Weaponry, 2010(2): 28-31(in Chinese). doi: 10.3969/j.issn.1673-5048.2010.02.007
|
[15] |
HARLOFF G J, SMITH G E. Supersonic-inlet boundary-layer bleed flow[J]. AIAA Journal, 1996, 34(4): 778-785. doi: 10.2514/3.13140
|
[16] |
SYBERG J, KONCSEK J L. Experimental evaluation of an analytically derived bleed system for a supersonic inlet[J]. Journal of Aircraft, 1976, 13(10): 792-797. doi: 10.2514/3.58712
|
[17] |
FUJIMOTO A, NIWA N, SAWADA K. Numerical investigation of supersonic inlet with realistic bleed andbypass systems[J]. Journal of Propulsion and Power, 1992, 8(4): 857-861. doi: 10.2514/3.23560
|
[18] |
HERRMANN D, BLEM S, GULHAN A. Experimental study of boundary-layer bleed impact on ramjet inlet performance[J]. Journal of Propulsion and Power, 2011, 27(6): 1186-1195. doi: 10.2514/1.B34223
|
[19] |
翁小侪, 郭荣伟. 一种二元定几何混压式超声速进气道流场控制概念研究[J]. 航空动力学报, 2012, 27(11): 2492-2498.
WENG X C, GUO R W. Study of novel flow control concept for fix-geometry two-dimensional mix-compression supersonic inlet[J]. Journal of Aerospace Power, 2012, 27(11): 2492-2498(in Chinese).
|
[20] |
WAN D W, GUO R W. Experimental investigation of a fixed-geometry two-dimensional mixed-compression supersonic inlet with sweep-forward high- light and bleed slot in an inverted “X”-type layout[J]. Chinese Journal of Aeronautics, 2007, 20(4): 304-312. doi: 10.1016/S1000-9361(07)60048-X
|
[21] |
麻肖妃, 谢旅荣, 郭荣伟. 双下侧布局带泄流腔二元进气道试验[J]. 航空动力学报, 2010, 25(8): 1818-1824.
MA X F, XIE L R, GUO R W. Investigation of two-dimensional supersonic twin inlet with slot-coupled cavity in 90° configuration at venter[J]. Journal of Aerospace Power, 2010, 25(8): 1818-1824(in Chinese).
|
[22] |
SCHÜLEIN E. Skin friction and heat flux measurements in shock/boundary layer interaction flows[J]. AIAA Journal, 2006, 44(8): 1732-1741. doi: 10.2514/1.15110
|
[1] | REN Liqiang, WANG Haipeng, PAN Xinlong, WAN Bing, TANG Tiantian. A complex maneuver recognition method based on wavelet time-frequency image and lightweight CNN-Transformer hybrid neural network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0745 |
[2] | LU S Q,GUAN F X,LAI H T,et al. Two-stage underwater image enhancement method based on convolutional neural networks[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):321-332 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.1003. |
[3] | TIAN Yu, LI Ruiying. An improved network two-terminal connection reliability algorithm based on state vectors[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0483 |
[4] | HU Gengshuo, JIAO Jian, HU Langxiao, JING Yongfeng. Reliability modeling and evaluation method of IMA under dynamic reconfiguration[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0188 |
[5] | SHI T X,CHEN L S,LI T S,et al. Distributed adaptive anti-disturbance control for power systems based on multi-agents[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1685-1692 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0496. |
[6] | YANG X X,JIANG Z J,ZHANG Y,et al. Distributed cooperative guidance strategy based on virtual negotiation and rolling horizon optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):61-76 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0174. |
[7] | ZHAO Jianyin, JIANG Jingwei, SUN Yuan, WEI Shuntao. Storage reliability assessment based on multivariate degradation failure and sudden failure Competition[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0601 |
[8] | LI Y,ZHANG X X,SUN F Q,et al. Belief reliability modeling for assembly accuracy of spaceborne SAR antenna deployable mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):134-143 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0234. |
[9] | ZHOU Y J,WAN Q,XU Y Z,et al. Redundancy design of a FADS system on a complex leading-edge vehicle using neural network approach[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):757-764 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0341. |
[10] | ZHANG Z,WANG P,ZHOU H Y. Reliability analysis of nozzle adjustment mechanism with interval distribution parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3377-3385 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0089. |
[11] | CHANG Z M,LI L Y. Double-loop surrogate model for time-dependent reliability analysis based on NARX and Kriging models[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1802-1812 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0541. |
[12] | WU X C,HONG L. Importance evaluation of JTC compensation capacitor based on reliability truth table[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2579-2586 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0767. |
[13] | LEI J Y,LEI Q N,LI H B,et al. A mesh parameterization method and life reliability-based optimization for turbine blade[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2651-2659 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0708. |
[14] | MA Ji, LI Rui-ying, ZHANG Qing-yuan, KANG Rui. Research on network time reliability evaluation method based on uncertainty theory[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0191 |
[15] | LIU A,XIU C D. Multi-source fusion positioning method based on hierarchical optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1176-1183 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0390. |
[16] | LI J,WANG L X,LI W H. MEMS gyro scope noise reduction method based on model decomposition multi-scale entropy[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2835-2840 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0745. |
[17] | LIU Qiang, SHANG Shang, QIAO Tie-zhu, ZHU Jian, SHI Yi-shan. Ionospheric clutter suppression method based on improved TCN-Elman neural network[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0429 |
[18] | SUN X T,CHENG W,CHEN W J,et al. A visual detection and grasping method based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2635-2644 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0130. |
[19] | WANG Y D,SUN Y F,LEI D Y,et al. Thermal oxidation reliability and structure optimization of thin film thermocouple[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):943-948 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0318. |
[20] | ZHU Qi-tao, LI Hong-shuang. A mixed reliability analysis method based on direct probability integral[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0498 |