| Citation: | ZHU B K,MIN K,WANG J Y,et al. Recognition of hypersonic inlet unstart state based on KMMS-ReliefF and SA-SVMRFE[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(12):4330-4341 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0655 |
Inlet unstart state can seriously affect the normal operation of hypersonic engines. Based on the pattern classification method of steady state pressure information, a hypersonic three-dimensional internal rotary combined inlet is taken as the research object to solve the unstart state recognition problem by extracting the key reliable wall pressure measurement points and constructing a high-accuracy classification model. Firstly, a number of along-track wall pressure data are obtained for several start/unstart states by numerical simulation, under different Mach numbers and back pressure conditions. Secondly, an algorithm integrating ReliefF (KMMS-ReliefF) and k-means clustering is proposed for the construction of the measurement points selection methods; this algorithm solves the imbalance of start/unstart categories of the dataset while completely considering the weight information of the joint feature pairs. Besides, in order to take into account the feature weights and the global classification accuracy, an improved SVM Recursive Feature Elimination Algorithm with simulated annealing strategy is proposed (SA-SVMRFE). Finally, the two algorithms are combined into a two-stage algorithm (KRSAS). A significant number of unnecessary measurement points are swiftly eliminated from the original dataset in the first stage using the KMMS-ReliefF algorithm. In the second stage, the SA-SVMRFE algorithm eliminates the redundant measurement points from the remaining subset of points. Then the comparison is made with the other four combined algorithms. The experimental results show that the combinatorial algorithm proposed in this paper is significantly lower than other algorithms in terms of optimal feature subset dimension. The unstart recognition model trained by 10-fold cross-validation SVM (10-cv SVM) has an average classification accuracy of more than 99% in the test set of each model tunnel, and has high operational efficiency. In addition, other classification algorithms such as kNN and AdaBoost are used to verify the reliability of the optimal measurement point combinations.
| [1] |
谭慧俊, 卜焕先, 张启帆, 等. 高超声速进气道不起动问题的研究进展[J]. 南京航空航天大学学报, 2014, 46(4): 501-508. doi: 10.3969/j.issn.1005-2615.2014.04.003
TAN H J, BU H X, ZHANG Q F, et al. Review of hypersonic inlet unstart phenomenon[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(4): 501-508(in Chinese). doi: 10.3969/j.issn.1005-2615.2014.04.003
|
| [2] |
张启帆, 谭慧俊, 陈昊. 基于滑动多缝板的高超声速进气道不起动振荡流态控制实验研究[J]. 推进技术, 2017, 38(7): 1450-1458.
ZHANG Q F, TAN H J, CHEN H. Experimental study of unstart oscillatory flow control of hypersonic inlet with movable slot-plate[J]. Journal of Propulsion Technology, 2017, 38(7): 1450-1458(in Chinese).
|
| [3] |
常军涛, 于达仁, 鲍文. 攻角引起的高超声速进气道不起动/再起动特性分析[J]. 航空动力学报, 2008, 23(5): 816-821.
CHANG J T, YU D R, BAO W. Characteristic analysis of unstart/restart of hypersonic inlets caused by variations of attack angle of freestream[J]. Journal of Aerospace Power, 2008, 23(5): 816-821(in Chinese).
|
| [4] |
刘振皓, 任方, 郭静, 等. 基于LES的超声速进气道不起动流场分析[C]//北京力学会第21届学术年会暨北京振动工程学会第22届学术年会论文集. 北京: 北京力学会, 2015: 1327-1329.
LIU Z H, REN F, GUO J, et al. LES-based analysis of unstart flow field in supersonic intakes[C]//Proceeding of the 21st Annual Conference of the Beijing Society of Theoretical and Applied Mechanic and the 22nd Annual Conference of the Beijing Society of Vibration Engineering. Beijing: BSTAM, 2015: 1327-1329(in Chinese).
|
| [5] |
王晨曦, 谭慧俊, 张启帆, 等. 高超声速进气道低马赫数不起动和再起动试验[J]. 航空学报, 2017, 38(11): 43-54.
WANG C X, TAN H J, ZHANG Q F, et al. Test of low Mach number unstart and restart processes of hypersonic inlet[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 43-54(in Chinese).
|
| [6] |
CHANG J T, LI N, XU K J, et al. Recent research progress on unstart mechanism, detection and control of hypersonic inlet[J]. Progress in Aerospace Sciences, 2017, 89: 1-22. doi: 10.1016/j.paerosci.2016.12.001
|
| [7] |
贺理浩, 张启帆, 岳连捷, 等. 高速进气道低马赫数不起动特性及马赫数影响规律[J]. 推进技术, 2021, 42(10): 2207-2217.
HE L H, ZHANG Q F, YUE L J, et al. Unstart characteristics of high speed inlet at low Mach number and influence law of Mach number[J]. Journal of Propulsion Technology, 2021, 42(10): 2207-2217(in Chinese).
|
| [8] |
袁化成, 梁德旺. 高超声速侧压式模型进气道不起动特性分析[J]. 南京航空航天大学学报, 2004, 36(6): 683-687. doi: 10.3969/j.issn.1005-2615.2004.06.003
YUAN H C, LIANG D W. Characteristic analysis of unstart performance for hypersonic side-wall inlet model[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2004, 36(6): 683-687(in Chinese). doi: 10.3969/j.issn.1005-2615.2004.06.003
|
| [9] |
YU D R, CHANG J T, BAO W, et al. Optimal classification criterions of hypersonic inlet start/unstart[J]. Journal of Propulsion and Power, 2007, 23(2): 310-316. doi: 10.2514/1.24640
|
| [10] |
CHANG J, YU D, BAO W, et al. A CFD assessment of classifications for hypersonic inlet start/unstart phenomena[J]. The Aeronautical Journal, 2009, 113(1142): 263-271. doi: 10.1017/S0001924000002931
|
| [11] |
胡清华, 常军涛, 鲍文, 等. 高超声速发动机进气道起动/不起动模式分析[C]//第二十九届中国控制会议论文集. 北京: 中国控制会议, 2010: 5939-5944.
HU Q H, CHANG J T, BAO W, et al. Pattern analysis on hypersonic inlet state of start/unstart[C]//Proceedings of the 29th Chinese Control Conference. Beijing: CCC, 2010: 5939-5944(in Chinese).
|
| [12] |
ZHENG R S, CHANG J T, HE H X, et al. Optimal classification of hypersonic inlet start/unstart based on manifold learning[J]. Applied Mechanics and Materials, 2013, 274: 200-203. doi: 10.4028/www.scientific.net/AMM.274.200
|
| [13] |
刘欢, 黄俊, 张勇, 等. Relief和SVMRFE在高超声速进气道不起动预测中的应用[J]. 计算机测量与控制, 2018, 26(4): 183-186, 190.
LIU H, HUANG J, ZHANG Y, et al. Application of relief and SVMRFE in predicting unstart of hypersonic inlet[J]. Computer Measurement & Control, 2018, 26(4): 183-186, 190.
|
| [14] |
刘欢. 高超声速进气道起动/不起动分类研究与实现[D]. 绵阳: 西南科技大学, 2018: 33-35.
LIU H. Research and implementation of classification of hypersonic inlet start/unstart[D]. Mianyang: Southwest University of Science and Technology, 2018: 33-35(in Chinese).
|
| [15] |
王祥. 基于改进的自适应遗传算法与多模型融合的信贷风险预测模型研究[D]. 成都: 西南交通大学, 2021: 41-45.
WANG X. Research on credit risk forecasting model based on improved adaptive genetic algorithm and multi-model fusion[D]. Chengdu: Southwest Jiaotong University, 2021: 41-45(in Chinese).
|
| [16] |
ZHU C X, ZHANG X, KONG F, et al. Design of a three-dimensional hypersonic inward-turning inlet with tri-ducts for combined cycle engines[J]. International Journal of Aerospace Engineering, 2018(1): 7459141.
|
| [17] |
ZHU C X, ZHANG H F, HU Z C, et al. Analysis on the low speed performance of an inward-turning multiduct inlet for turbine-based combined cycle engines[J]. International Journal of Aerospace Engineering, 2019(1): 6728387.
|
| [18] |
蔡泽君, 胡占仓, 余联郴, 等. XTER内收缩组合进气道设计理念及气动特性[J]. 空气动力学学报, 2022, 40(1): 218-231. doi: 10.7638/kqdlxxb-2021.0393
CAI Z J, HU Z C, YU L C, et al. Design concept and aerodynamic characteristics of XTER TBCC inlet[J]. Acta Aerodynamica Sinica, 2022, 40(1): 218-231(in Chinese). doi: 10.7638/kqdlxxb-2021.0393
|
| [19] |
ROBNIK-ŠIKONJA M, KONONENKO I. Theoretical and empirical analysis of ReliefF and RReliefF[J]. Machine Learning, 2003, 53(1): 23-69.
|
| [20] |
TIWARI D. Handling class imbalance problem using feature selection[J]. International Journal of Advanced Research in Computer Science & Technology, 2014, 2(2): 516-520.
|
| [21] |
尹欢一. 一种改进的多阶段ReliefF特征选择算法[J]. 信息与电脑, 2019, 16: 45-47.
YIN H Y. An improved multi-stage ReliefF feature selection algorithm[J]. China Computer & Communication, 2019, 16: 45-47(in Chinese).
|
| [22] |
GUYON I, WESTON J, BARNHILL S. Gene selection for cancer classification using support vector machines[J]. Machine Learning, 2001, 46(1-3): 389-422.
|
| [23] |
张学工, 汪小我. 模式识别: 模式识别与机器学习[M]. 北京: 清华大学出版社, 2021: 137-156.
ZHANG X G, WANG X W. Pattern recognition: pattern recognition and machine learning[M]. Beijing: Tsinghua University Press, 2021: 137-156(in Chinese).
|
| [24] |
王君. 基于SVM-RFE的特征选择方法研究[D]. 大连: 大连理工大学, 2015: 13-17.
WANG J. The research of feature selection algorithm based on SVM-RFE[D]. Dalian: Dalian University of Technology, 2015: 13-17(in Chinese).
|