Volume 52 Issue 1
Jan.  2026
Turn off MathJax
Article Contents
JIAO W D,YANG B. A TCN trajectory prediction method fusing MSC and spatio-temporal dual attention[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(1):15-27 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0717
Citation: JIAO W D,YANG B. A TCN trajectory prediction method fusing MSC and spatio-temporal dual attention[J]. Journal of Beijing University of Aeronautics and Astronautics,2026,52(1):15-27 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0717

A TCN trajectory prediction method fusing MSC and spatio-temporal dual attention

doi: 10.13700/j.bh.1001-5965.2023.0717
Funds:

National Key Research and Development Program of China (2020YFB1600101)

More Information
  • Corresponding author: E-mail:nxjiaowd@sina.com
  • Received Date: 02 Nov 2023
  • Accepted Date: 07 Feb 2024
  • Available Online: 11 Mar 2024
  • Publish Date: 08 Mar 2024
  • Aiming at the problem that existing trajectory prediction models are difficult to effectively extract multi-scale spatio-temporal features, which leads to limited prediction accuracy, a new method MDAT-Net for trajectory prediction based on a temporal convolutional network (TCN) fused with a multi-scale convolutional (MSC) network and spatio-temporal dual attention (STDA) is proposed. The MDAT-Net model contains the MSAT, MTAT trajectory prediction module and voting module. First, in the prediction module, a multi-scale convolution architecture is built using different scale convolution kernels to better extract spatio-temporal features at various scales and solve the fixed kernel size issue in the traditional temporal convolutional network. Secondly, in order to dynamically mine the potential correlation between hidden features and target features, spatial attention mechanism and temporal attention mechanism are introduced to adaptively focus on important information and skip secondary information. Finally, the voting module decides which model to apply for each dimension prediction, allowing the benefits of both prediction models to be combined and high-precision trajectory prediction to be achieved. The experimental results show that the MDAT-Net model can improve the root mean square error (RMSE) up to 83.33% and the mean absolute error (MAE) up to 85.85% with high accuracy and robustness.

     

  • loading
  • [1]
    徐正凤, 曾维理, 羊钊. 航空器轨迹预测技术研究综述[J]. 计算机工程与应用, 2021, 57(12): 65-74.

    XU Z F, ZENG W L, YANG Z. Survey of civil aircraft trajectory prediction[J]. Computer Engineering and Applications, 2021, 57(12): 65-74(in Chinese).
    [2]
    汤新民, 韩云祥, 韩松臣. 基于混杂系统模型的航空器4D航迹推测[J]. 南京航空航天大学学报, 2012, 44(1): 105-112.

    TANG X M, HAN Y X, HAN S C. Aircraft 4D trajectory estimation based on hybrid system model[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(1): 105-112(in Chinese).
    [3]
    张军峰, 葛腾腾, 陈强, 等. 离场航空器四维航迹预测及不确定性分析[J]. 西南交通大学学报, 2016, 51(4): 800-806.

    ZHANG J F, GE T T, CHEN Q, et al. 4D trajectory prediction and uncertainty analysis for departure aircraft[J]. Journal of Southwest Jiaotong University, 2016, 51(4): 800-806(in Chinese).
    [4]
    吕波, 王超. 改进的扩展卡尔曼滤波在航空器4D航迹预测算法中的应用[J]. 计算机应用, 2021, 41(增刊1): 277-282.

    LYU B, WANG C. Application of improved extended Kalman filter in aircraft 4D track prediction algorithm[J]. Journal of Computer Applications, 2021, 41(Sup 1): 277-282(in Chinese).
    [5]
    戴礼灿, 刘欣, 张海瀛, 等. 基于卡尔曼滤波算法展开的飞行目标轨迹预测[J]. 系统工程与电子技术, 2023, 45(6): 1814-1820.

    DAI L C, LIU X, ZHANG H Y, et al. Flight target track prediction based on Kalman filter algorithm unfolding[J]. Systems Engineering and Electronics, 2023, 45(6): 1814-1820(in Chinese).
    [6]
    SHI Z Y, XU M, PAN Q, et al. LSTM-based flight trajectory prediction[C]//Proceedings of the International Joint Conference on Neural Networks. Piscataway: IEEE Press, 2018: 1-8.
    [7]
    SAHADEVAN D, HARIKRISHNAN P M, PONNUSAMY P, et al. Ground-based 4d trajectory prediction using bi-directional LSTM networks[J]. Applied Intelligence, 2022, 52(14): 16417-16434. doi: 10.1007/s10489-022-03309-6
    [8]
    代翔. 基于注意力循环网络的4D轨迹预测模型[J]. 电讯技术, 2022, 62(1): 39-45.

    DAI X. A 4D trajectory prediction model based on attentional recurrent network[J]. Telecommunication Engineering, 2022, 62(1): 39-45(in Chinese).
    [9]
    田杉. 基于神经网络的4D航迹预测方法[D]. 天津: 中国民航大学, 2020.

    TIAN S. 4D track prediction method based on neural network[D]. Tianjin: Civil Aviation University of China, 2020(in Chinese).
    [10]
    JIAO W D, MA C. Track prediction algorithm based on GA-BPNN[C]//Proceedings of the IEEE 3rd International Conference on Civil Aviation Safety and Information Technology. Piscataway: IEEE Press, 2021: 211-217.
    [11]
    TRAN P N, NGUYEN H Q V, PHAM D T, et al. Aircraft trajectory prediction with enriched intent using encoder-decoder architecture[J]. IEEE Access, 2022, 10: 17881-17896. doi: 10.1109/ACCESS.2022.3149231
    [12]
    韩萍, 张启, 石庆研, 等. 基于DBSCAN-GRU算法的终端区4D航迹预测[J]. 信号处理, 2023, 39(3): 439-449.

    HAN P, ZHANG Q, SHI Q Y, et al. 4D trajectory prediction of terminal area based on DBSCAN-GRU algorithm[J]. Journal of Signal Processing, 2023, 39(3): 439-449(in Chinese).
    [13]
    HAN P, WANG W Q, SHI Q Y, et al. A combined online-learning model with K-means clustering and GRU neural networks for trajectory prediction[J]. Ad Hoc Networks, 2021, 117: 102476. doi: 10.1016/j.adhoc.2021.102476
    [14]
    BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. (2018-04-19)[2023-11-01]. https://arxiv.org/abs/1803.01271.
    [15]
    HUANG J, DING W J. Aircraft trajectory prediction based on Bayesian optimised temporal convolutional network-bidirectional gated recurrent unit hybrid neural network[J]. International Journal of Aerospace Engineering, 2022, 2022: 2086904.
    [16]
    LIN Z, YUE W Q, HUANG J, et al. Ship trajectory prediction based on the TTCN-attention-GRU model[J]. Electronics, 2023, 12(12): 2556. doi: 10.3390/electronics12122556
    [17]
    ZHANG B, WANG S, DENG L W, et al. Ship motion attitude prediction model based on IWOA-TCN-Attention[J]. Ocean Engineering, 2023, 272: 113911. doi: 10.1016/j.oceaneng.2023.113911
    [18]
    ZHANG K Y, ZHANG C M, ZHU Q H, et al. Ship trajectory D-TCN prediction method based on satellite remote sensing positioning data[C]//Proceedings of the China Automation Congress. Piscataway: IEEE Press, 2022: 1419-1424.
    [19]
    ZHOU S H, SONG C F, WANG T H, et al. A short-term hybrid TCN-GRU prediction model of bike-sharing demand based on travel characteristics mining[J]. Entropy, 2022, 24(9): 1193. doi: 10.3390/e24091193
    [20]
    WU H, LIANG Y, ZHOU B, et al. A Bi-LSTM and AutoEncoder based framework for multi-step flight trajectory prediction[C]//Proceedings of the 8th International Conference on Control and Robotics Engineering. Piscataway: IEEE Press, 2023: 44-50.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article Metrics

    Article views(291) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return