Xue Xiaochun, Li Zongrui, Zhu Ziqiang, et al. Calculation of the Electromagnetic Scattered Field and Radar Cross Section[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(2): 193-196. (in Chinese)
Citation: He Heng, Wu Ruixiang. Improved BP neural network in design of aircraft antiskid braking system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(06): 561-564. (in Chinese)

Improved BP neural network in design of aircraft antiskid braking system

  • Received Date: 22 Jan 2003
  • Publish Date: 30 Jun 2004
  • The construction of Sp (perfect slip ratio) identifier with back-propagation neural network was proposed to prevent skidding and have the best braking effect in the aircraft braking process. In order to improve the learning ability of the network, a type of self-adaptive learning rate method, second-order learning rate method, was introduced. Some problems in the practice of this method were discussed and the solutions were presented. A third-order learning rate method was deduced based on the method. The method of reasonable configuration of active functions was proposed. The combination of these methods renders better learning precision and speed.

     

  • [1] 焦志强. 系缆气球气动力、动稳定性及大气扰动响应 . 北京:北京航空航天大学航空科学与工程学院,2003 Jiao Zhiqiang. Aerodynamic estimation stability and dynamics repouse for a tethered balloon .BeiJing:School of Aeronautic Science and Technology, Beijing University of Aeronautics and Astronautics,2003 [2] Jones S P,DeLaurier J D. Aerodynamic estimation techniques for aerostats and airships . AIAA-81-1339,1981 [3]Jones S P. Aerodynamics of a new aerostat design with inverted-y fins . AIAA 85-0867-CP, 1985
  • Relative Articles

    [1]XU M,LI Y,GAO J,et al. Design of aircraft anti-skid braking system integral sliding mode control system based on novel reaching law[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1107-1116 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0185.
    [2]ZHANG Jun, HUANG Minghui, WANG Yuelin, YANG Xing, YE Min, JIA Yongle. Unmanned trajectory tracking strategy for aircraft tug with MPC method[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023-0431
    [3]CAO Hao, CHEN Yiou, ZHANG Runze. A BP decoding algorithm for polar codes based on task graph reconstruction[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0407
    [4]SHI T X,CHEN L S,LI T S,et al. Distributed adaptive anti-disturbance control for power systems based on multi-agents[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1685-1692 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0496.
    [5]LU G,ZHONG T X,GENG J. A Transformer based deep conditional video compression[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):442-448 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0374.
    [6]YANG X X,JIANG Z J,ZHANG Y,et al. Distributed cooperative guidance strategy based on virtual negotiation and rolling horizon optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):61-76 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0174.
    [7]YAN Kun, ZHAO Jin-ze, CHEN Chao-bo, GAO Song, CAO Kai. Neural network-based fault tolerant control for unmanned helicopter with multiple actuator faults[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0699
    [8]XIE M J,DUAN J Q,MA W R,et al. Sliding mode control for electric braking systems of aircraft based on prescribed performance[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):260-267 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0229.
    [9]YI Shaopeng, DONG Wei, WANG Weilin, WANG Chunyan, YI Aiqing, WANG Jianan. Neural Network Controller-Based Safe Landing Algorithm for UAVs[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0402
    [10]LI Y R,YAO T,ZHANG L L,et al. Image-text matching algorithm based on multi-level semantic alignment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):551-558 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0385.
    [11]ZHOU Y J,WAN Q,XU Y Z,et al. Redundancy design of a FADS system on a complex leading-edge vehicle using neural network approach[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):757-764 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0341.
    [12]ZHAO S,LIN L,LI Z,et al. Deck motion prediction and compensation technology based on BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2772-2780 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0743.
    [13]ZHANG Y H,LYU N,MIAO J C,et al. Improved intelligent detection algorithm for SPMA protocol channel state based on recurrent neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):735-744 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0309.
    [14]LIU A,XIU C D. Multi-source fusion positioning method based on hierarchical optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(5):1176-1183 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0390.
    [15]JIANG L,SUN R,LIU Z W,et al. Modeling and accuracy analysis of GNSS ionospheric error in EU-China based on GA-BP[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1533-1542 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0476.
    [16]LI J,WANG L X,LI W H. MEMS gyro scope noise reduction method based on model decomposition multi-scale entropy[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2835-2840 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0745.
    [17]SUN X T,CHENG W,CHEN W J,et al. A visual detection and grasping method based on deep learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2635-2644 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0130.
    [18]SHU Hong-bin, YU Chuan-qiang, LIU Zhi-hao, TANG Sheng-jin, CHEN Jian-wei. State estimation of multi-axle special vehicles by fusion of neural network and unscented Kalman filter[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2022.0535
    [19]LI Zheyang, ZHANG Ruyi, TAN Wenming, REN Ye, LEI Ming, WU Hao. A graph convolution network based latency prediction algorithm for convolution neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2450-2459. doi: 10.13700/j.bh.1001-5965.2021.0149
    [20]LONG Yuan, DENG Xiaolong, YANG Xixiang, HOU Zhongxi. Short-term rapid prediction of stratospheric wind field based on PSO-BP neural network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1970-1978. doi: 10.13700/j.bh.1001-5965.2021.0068
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(880) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return