Volume 30 Issue 10
Oct.  2004
Turn off MathJax
Article Contents
Zhang Yue, Yuan Hongtao, Cheng Jin, et al. Array materials of one-dimensional oxides prepared by MOCVD method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(10): 939-943. (in Chinese)
Citation: Zhang Yue, Yuan Hongtao, Cheng Jin, et al. Array materials of one-dimensional oxides prepared by MOCVD method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(10): 939-943. (in Chinese)

Array materials of one-dimensional oxides prepared by MOCVD method

  • Received Date: 28 Apr 2004
  • Publish Date: 31 Oct 2004
  • The structure and the new features of a new-type atmospheric metal organic chemical vapor deposition (MOCVD) system were introduced. The atmospheric MOCVD method was introduced to prepare array materials of oxides by the example of preparing array material of ZnO nanorods. The preparing process of oxide array materials was discussed in detail. SEM experiments showed that all these tropistic growing materials of one-dimensional oxides grew in a certain direction perpendicular to the substrates and well aligned. These one-dimensional materials are characterized of no crystal boundaries, few crystal defects, little superficial area and special tips. How to make all kinds of array materials of one-element metal oxides (such as VOx, FeOx, TiO2, etc.) and doped multi-element metal oxides (such as ZnAlO,ZnMgO, etc.) was introduced.

     

  • loading
  • [1] Yang P, Yan H, Mao S, et al. Controlled growth of ZnO nanowires and their properties[J]. Advanced Functional Materials, 2002,12(5):323~331 [2]Lyu S C, Zhang Y, Ruh H, et al. Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires [J]. Chemical Physics Letter, 2002, 363:134~138 [3]Wang Y W, Zhang L D, Wang G Z, et al. Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties [J]. Journal of Crystal Growth, 2002, 234:171~175 [4]Zheng M J, Zhang L D, Li G H, et al. Fabrication and optical properties of large-scale zinc oxide nanowire arrays by one-step electrochemical deposition technique [J]. Chemical Physics Letter, 2002, 363:123~128 [5]Park W I, Kim D H, Jung S W, et al. Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods[J]. Applied Physics Letters, 2002, 80(22):4232~4234 [6]Wu J J, Liu S C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition [J]. Advanced Materials, 2002, 14(3):215~218 [7]Li J Y, Chen X L, Li H, et al. Fabrication of zinc oxide nanorods. Journal of Crystal Growth, 2001, 233:5~7 [8]Sun X M, Chen X, Deng Z X, et al. A CTAB-assisted hydrothermal orientation growth of ZnO nanorods [J]. Materials Chemistry and Physics, 2002, 78:99~104 [9]Xu C, Xu G, Liu Y, et al. A simple and novel route for the preparation of ZnO nanorods [J]. Solid State Communications, 2002,122:175~179 [10] Guo L, Cheng J X, Li X Y, et al. Synthesis and optical properties of crystalline polymer-capped ZnO nanorods [J]. Materials Science and Engineering C, 2001, 16:123~127 [11]Park W I, Yi G C, Kim M, et al. ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy [J]. Advanced Materials, 2002, 14(24):1841~1843 [12]Satoh M, Tanaka N, Ueda Y, et al. Epitaxial growth of zinc oxide whiskers by chemical vapor deposition under atmosphere pressure[J]. Japanese Journal of Applied Physics, 1999,38:L586~L589 [13]Saitoh H, Saton M, Tanaka N, et al. Homogeneous growth of zinc oxide whiskers [J]. Japanese Journal of Applied Physics, 1999,38:376~380 [14]Hu J Q, Ma X, Xie Z Y, et al. Characterization of zinc oxide crystal whiskers grown by thermal evaporation[J]. Chemical Physics Letters, 2001, 344:97~100 [15]Yuan Hongtao, Zhang Yao. Preparation of well-aligned ZnO whiskers on glass substrate by atmospheric MOCVD [J]. Journal of Crystal Growth, 2004, 263:119~124 [16] 袁洪涛,张 跃,谷景华. MOCVD法制备高度定向ZnO晶须. 中国材料研讨会论文集. 2002.1939~1942 Yuan Hongtao, Zhang Yue, Gu Jinghua. Preparation of highly oriented ZnO whiskers. The Proceeding of Chinese Materials Workshop. 2002.1939~1942(in Chinese) [17] 袁洪涛,张 跃,谷景华.原位生长高度定向ZnO晶须[J]. 物理学报,2004,53(2):646~650 Yuan Hongtao, Zhang Yue, Gu Jinghua. A study on the in-situ growth of highly oriented ZnO whiskers [J]. Acta Physica Sinica, 2004,53(2):646~650(in Chinese) [18] Yuan Hongtao, Zhang Yao. Effect of MOCVD conditions on morphology of zinc oxide whiskers. The First Asia Workshop on MOCVD for Ceramic. Beijing, 2003 [19]Song Qiang, Zhang Yao. Growth of VOx whisker by MDCVD. The First Asia Workshop on MOCVD for Ceramic. Beijing, 2003 [20]Govender K, David S B, O’Brien P. Room temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition [J]. Advanced Materials, 2002, 14(17):1221~1224 [21]Okajima Y, Amemiya M, Kato K, et al. VLS growth of silicon whiskers on a patterned silicon-on-insulator (SOI) wafer [J]. Journal of Crystal Growth, 1996,165:37~41 [22]Yoshino Y, Makino T, Katayama Y, et al. Optimization of zinc oxide thin film for surface acoustic wave filters by radio frequency sputtering[J]. Vacuum, 2000,59:538~545 [23]Jenkins D F, Cunningham M J, Remiens G, et al. The use of sputtered ZnO piezoelectric thin films as broad-band microactuators [J]. Sensors and Actuators A Physical, 1997, 63:135~139 [24]Paraguay D F, Miki-Yoshidaa M, Moralesb U J, et al. Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour [J]. Thin Solid Films, 2000,373:137~140
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(667) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return