Citation: | Zhu Tianle, Hao Jiming, Fu Lixin, et al. Catalytic removal of nitrogen oxides for the lean-burn automobile exhaust[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(10): 1025-1028. (in Chinese) |
[1] Fritz A, Pitchon V. The current state of research on automotive lean NOx catalysis[J]. Applied Catalysis B, 1997,13(1):1~25 [2]Hung M C, Kung H H. Lean NOx catalysis over alumina-supported catalysts[J]. Topics in Catalysis, 2000,10(1):21~26 [3]Burch R, Breen J P, Meunier F C. A review of the selective reduction of NO x with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts[J]. Applied Catalysis B, 2002,39(2):283~303 [4]Pa rvulescua V I, Grangeb P, Delmonb B. Catalytic removal of NO[J]. Catalysis Today,1998,46(2):233~316 [5]Lin Y S, Chang C H, Gopalan R. Improvement of thermal stability of porous nanostructured ceramic membranes[J]. Industry Engineering Ceramics Research,1994,33(4):860~870 [6]Akama H, Matsushita K. Recent lean NOx catalyst technologies for automobile exhaust control[J]. Catalysis Surveys from Japan, 1999,3:139~146 [7]Amiridis M D, Zhang T J, Farrauto R J. Selective catalytic reduction of nitric oxide by hydrocarbons[J]. Applied Catalysis B, 1996,10(1-3):203~227 [8]Efthimiadis E A, Lionta G D, Christoforou S C. The effect of CH4, H2O and SO2 on the NO reduction with C3H6[J]. Catalysis Today, 1998,40(1):15~26
|
[1] | JIN Yuhao, LIU Bingguo, YUWEN Chao, YANG Zhenxing, GONG Siyu, CHEN Wang. Ethylenediamine functionalized Graphene Oxide enhances the wear resistance of Epoxy Resin composites[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0474 |
[2] | DAI W,SHI S Z,FU Y C,et al. Numerical study on flow and heat transfer of supercritical carbon dioxide under non-uniform heat flux influences[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3074-3083 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0769. |
[3] | WANG Y H,LI Y J,LI H W,et al. Numerical study on heat transfer deterioration of supercritical-pressure carbon dioxide in a square channel[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):1888-1897 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0533. |
[4] | GUO Chenyang, LIU Yi, LIU Haozheng, WANG Junjie, GAO Jingcheng, FENG Shiyu. Research on oxygen consumption based inerting monolithic catalyst reactor performance[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0562 |
[5] | JIA Zhi-chao, BI Han-li, PENG Zheng, LI Guo-guang, WU Qi, ZHANG Hong-xing, MIAO Jian-yin. Steady state modeling and characteristic analysis of propylene flat loop heat pipes[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0814 |
[6] | WANG Y D,SUN Y F,LEI D Y,et al. Thermal oxidation reliability and structure optimization of thin film thermocouple[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):943-948 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0318. |
[7] | DONG Jie, SU Yu-lin, ZHANG Da-cheng. Multi-level degradation-based prognostics for micro direct methanol fuel cells[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0517 |
[8] | ZOU Zhengping, WANG Yifan, YAO Lichao, LIU Huoxing, XU Pengcheng, LI Hui. Progress in research of closed supercritical carbon dioxide Brayton cycle system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1643-1677. doi: 10.13700/j.bh.1001-5965.2022.0196 |
[9] | WANG Chenchen, PAN Jun, WANG Yangyang, DUAN Weijie. Effect of suction flow rate on performance of catalytic inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1183-1189. doi: 10.13700/j.bh.1001-5965.2021.0026 |