Xu Zhongxiang, Qu Xiangju. Analysis on Evaluation Method of Handling Qualities of Pilot and Aircraft System[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(2): 197-200. (in Chinese)
Citation: HU Hong-jie, ER Lian-jie, LIU Qiang, et al. Study of GPS/MM Integrated Navigation System for Vehicle Positioning Based on D-S Evidence Reasoning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(2): 153-156. (in Chinese)

Study of GPS/MM Integrated Navigation System for Vehicle Positioning Based on D-S Evidence Reasoning

  • Received Date: 01 Nov 1999
  • Publish Date: 28 Feb 2001
  • Classic PID control method which is based on precise mathematical model has poor adaptivity and is not adaptive to nonlinear and time-variant plants.Conventional neural network is always complicated and its stability often suffers from the effect of initial weight value selecting.A simple stable direct adaptive PID control algorithm is proposed, which is based on RBF neural network.To guarantee the system stability and improve the system precision, initial weight value selecting problem for the neural network is discussed and corresponding iterative algorithm is provided. Simulation results indicate that the system robustness and tracking performance are superior to those of classic PID method.

     

  • [1] Hunt K J, Sbarbaro D. Neural networks for control systems—a survey[J]. Automatica 1992, 28(6):1083~1112. [2] Robert M Sanner, Jean-Jacques E Slotine. Gaussian networks for direct adaptive control[J]. IEEE Trans on Neural Networks, 1992,3(6):837~863. [3] Carelli R, Camacho E F, Patifio D. A network based feedforward adaptive controller for robots[J]. IEEE Trans on Systems,Man,Cybernetics, 1995,25(9):1281~1287.
  • Relative Articles

    [1]YIN W Z,LIAN D P,LI K Y,et al. Manipulator force/position hybrid control based on staged adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):161-166 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0955.
    [2]ZUO L,ZHANG X L,LI Z Y,et al. UAV control law design method based on active-disturbance rejection control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1512-1522 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0488.
    [3]LIU S Y,YANG H L,ZHANG Z G,et al. Vibration control of flexible spacecraft with output constraints and external disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1560-1567 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0622.
    [4]ZHANG Y L,MA Z Z,SHI L,et al. Multi-agent coverage control based on communication connectivity maintenance constraints[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(2):519-528 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0340.
    [5]GUAN Y Z,FENG M. Application of active disturbance rejection control in gyro motor steady speed control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):234-242 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0209.
    [6]WANG C,CHEN W J,CHEN W H,et al. Design of suspension weight-support rehabilitation system adapted to fluctuation of human center of gravity[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2322-2330 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0605.
    [7]SUN X Y,SHEN Q,WU S F. Output regulation adaptive drag-free control with enhanced Kinky Inference[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1604-1613 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0504.
    [8]ZHANG Y,YU H,YANG X X,et al. Adaptive group formation tracking-containment control for UAV swarm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):97-109 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0264.
    [9]SUN X M,MA X,LIU Y,et al. Adaptive sliding mode region reaching control for uncertain nonlinear systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2482-2491 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0647.
    [10]ZHAI You-hong, LI Chun-tao, SU Zi-kang, LI Xue-bing. Neural network incremental dynamic inversion target drone somersault maneuver control[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0690
    [11]YAN Kun, ZHAO Jin-ze, CHEN Chao-bo, GAO Song, CAO Kai. Neural network-based fault tolerant control for unmanned helicopter with multiple actuator faults[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0699
    [12]YANG X X,JIANG Z J,ZHANG Y,et al. Distributed cooperative guidance strategy based on virtual negotiation and rolling horizon optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):61-76 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0174.
    [13]ZHOU Y J,WAN Q,XU Y Z,et al. Redundancy design of a FADS system on a complex leading-edge vehicle using neural network approach[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):757-764 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0341.
    [14]SHI T X,CHEN L S,LI T S,et al. Distributed adaptive anti-disturbance control for power systems based on multi-agents[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1685-1692 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0496.
    [15]MA Z W,BAI H,CHEN H B,et al. RBF neural network robust adaptive control of quadrotor aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1620-1628 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0595.
    [16]WANG C Y,YANG L M,LI Y H. A mapping leader formation control strategy for multiple mobile robots based on two-stage sliding mode control[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3108-3114 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0792.
    [17]CHEN T T,WANG F Y,XIA C Y,et al. Tracking control of multi-agent systems based on persistent-hold mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3321-3327 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0065.
    [18]LI C,HE Y Z,HU Y. Characteristic model control of nutation target contact detumbling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2977-2988 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0798.
    [19]TANG Z Y,MA F Y,PEI Z C. Improved PSO-RBF neural network adaptive sliding mode control for quadrotor systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1563-1572 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0477.
    [20]FU H Q,WU S F,LIU M L,et al. Disturbance-observer based adaptive control for space inertial sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2799-2806 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0734.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.6 %FULLTEXT: 21.6 %META: 73.1 %META: 73.1 %PDF: 5.2 %PDF: 5.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 5.9 %其他: 5.9 %其他: 0.8 %其他: 0.8 %San Lorenzo: 0.3 %San Lorenzo: 0.3 %上海: 0.9 %上海: 0.9 %东京: 0.3 %东京: 0.3 %佛山: 0.4 %佛山: 0.4 %北京: 3.3 %北京: 3.3 %十堰: 0.1 %十堰: 0.1 %南京: 0.4 %南京: 0.4 %南昌: 0.4 %南昌: 0.4 %南阳: 0.1 %南阳: 0.1 %台中: 0.1 %台中: 0.1 %台州: 0.3 %台州: 0.3 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 0.5 %哈尔滨: 0.5 %嘉兴: 0.3 %嘉兴: 0.3 %大连: 0.1 %大连: 0.1 %天津: 1.2 %天津: 1.2 %太原: 0.4 %太原: 0.4 %宣城: 0.5 %宣城: 0.5 %常州: 0.1 %常州: 0.1 %广州: 0.1 %广州: 0.1 %延安: 0.1 %延安: 0.1 %张家口: 0.8 %张家口: 0.8 %成都: 0.1 %成都: 0.1 %扬州: 0.4 %扬州: 0.4 %无锡: 0.7 %无锡: 0.7 %昆明: 0.3 %昆明: 0.3 %杭州: 0.8 %杭州: 0.8 %武汉: 0.1 %武汉: 0.1 %江门: 0.1 %江门: 0.1 %沧州: 0.1 %沧州: 0.1 %深圳: 8.6 %深圳: 8.6 %温州: 0.5 %温州: 0.5 %漯河: 2.5 %漯河: 2.5 %盐城: 0.1 %盐城: 0.1 %石家庄: 1.0 %石家庄: 1.0 %福州: 0.4 %福州: 0.4 %聊城: 0.1 %聊城: 0.1 %芒廷维尤: 18.1 %芒廷维尤: 18.1 %芝加哥: 0.5 %芝加哥: 0.5 %莫斯科: 0.1 %莫斯科: 0.1 %衡阳: 0.1 %衡阳: 0.1 %西宁: 44.2 %西宁: 44.2 %西安: 0.4 %西安: 0.4 %郑州: 2.0 %郑州: 2.0 %铁岭: 0.1 %铁岭: 0.1 %镇江: 0.1 %镇江: 0.1 %长沙: 0.4 %长沙: 0.4 %马鞍山: 0.1 %马鞍山: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他San Lorenzo上海东京佛山北京十堰南京南昌南阳台中台州合肥哈尔滨嘉兴大连天津太原宣城常州广州延安张家口成都扬州无锡昆明杭州武汉江门沧州深圳温州漯河盐城石家庄福州聊城芒廷维尤芝加哥莫斯科衡阳西宁西安郑州铁岭镇江长沙马鞍山齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3282) PDF downloads(18279) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return