Han Chao. Adaptive Attitude Control of Extra-Vehicular Activity[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(6): 634-638. (in Chinese)
Citation: Han Chao. Adaptive Attitude Control of Extra-Vehicular Activity[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(6): 634-638. (in Chinese)

Adaptive Attitude Control of Extra-Vehicular Activity

  • Received Date: 03 May 1999
  • Publish Date: 30 Jun 1999
  • Extra-Vehicular Activity (EVA) is one kind of aided devices for astronaut's acting out of the spacecraft. Because of the mass property uncertainties and variations, the attitude control of EVA is a nonlinear and time variant control system with the uncertain parameters. This paper presents the study for direct adaptive angular velocity tracking (AAVT) control of EVA with the command generator tracker (CGT) method. Based on the AAVT, an adaptive attitude control method of EVA is presented. Simulation shows that the adaptive control with CGT has good robustness. The tracking precision of angular velocity is 0.1 deg/s; precision of attitude control is 0.5 deg.

     

  • 1. Tanygin S, Willioms T. Direct adaptive control for SAFER/astronaut system. Advances in the Astronautical Sciences,1996, 90(1): 609~628 2. Kaufman H, Bar-Kana I, Sobrl K. Direct adaptive control algorithms, theory and application. Springer-Verlag,1994 3. 章仁为. 卫星轨道姿态动力学与控制.北京:北京航空航天大学出版社,1998 4. Tanygin S, Williams T. Mass property estimation using coasting maneuvers. Journal of Guidance, Control and Dynamics, 1997, 20(4): 625~632 5. 薛定宇. 控制系统计算机辅助设计. 北京:清华大学出版社,1996
  • Relative Articles

    [1]YIN W Z,LIAN D P,LI K Y,et al. Manipulator force/position hybrid control based on staged adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):161-166 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0955.
    [2]SHI T X,CHEN L S,LI T S,et al. Distributed adaptive anti-disturbance control for power systems based on multi-agents[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1685-1692 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0496.
    [3]SUN X Y,SHEN Q,WU S F. Output regulation adaptive drag-free control with enhanced Kinky Inference[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1604-1613 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0504.
    [4]MA Z W,BAI H,CHEN H B,et al. RBF neural network robust adaptive control of quadrotor aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1620-1628 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0595.
    [5]FAN Zhi-wen, SONG Xiao-juan, LU: Shu-feng, YUE Bao-zeng. Fixed-time sliding mode fault-tolerant control for liquid-filled spacecraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0736
    [6]LU Zheng-liang, XIE Hao-dong, NI Tao, XU Hao. Research on attitude compound control technology for Micro/Nanosatellite maneuvering segment[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0688
    [7]ZHANG Y,YU H,YANG X X,et al. Adaptive group formation tracking-containment control for UAV swarm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):97-109 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0264.
    [8]SUN X M,MA X,LIU Y,et al. Adaptive sliding mode region reaching control for uncertain nonlinear systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2482-2491 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0647.
    [9]LIU S Y,YANG H L,ZHANG Z G,et al. Vibration control of flexible spacecraft with output constraints and external disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1560-1567 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0622.
    [10]CAI H,SHI P. Attitude control method for flexible spacecraft based on LPV model[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3921-3929 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0880.
    [11]JIN L,YANG S L. Fault-tolerant control of spacecraft attitude with prescribed performance based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2404-2412 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0666.
    [12]LIU H,HUANG S,TU H Y. Quadrotor sliding mode control based on predefined time[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1665-1674 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0481.
    [13]LIU Y,ZHOU J P,ZHANG X T. Application and prospect of additive manufacturing technology in manned space engineering[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(1):83-91 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0455.
    [14]TANG Z Y,MA F Y,PEI Z C. Improved PSO-RBF neural network adaptive sliding mode control for quadrotor systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1563-1572 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0477.
    [15]DENG B H,XU J F. Active disturbance rejection control of attitude of compound unmanned helicopter[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3100-3107 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0788.
    [16]YAN H B,XU W B,HUANG L E. Design of quadrotor attitude controller based on improved ADRC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3283-3292 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0129.
    [17]LI C,HE Y Z,HU Y. Characteristic model control of nutation target contact detumbling[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2977-2988 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0798.
    [18]FU H Q,WU S F,LIU M L,et al. Disturbance-observer based adaptive control for space inertial sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2799-2806 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0734.
    [19]WANG S Y,ZHANG J,YANG L Y. Attitude control law based on L1-ITD for a tail-sitter UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2501-2509 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0681.
    [20]WANG T,JIAO H C,LIU J,et al. Design of attitude control method for ultra-low-orbit satellite with pneumatic steering gear[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):548-558 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0265.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0505101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 19.2 %FULLTEXT: 19.2 %META: 78.8 %META: 78.8 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.7 %其他: 2.7 %其他: 0.7 %其他: 0.7 %Canton: 0.3 %Canton: 0.3 %China: 0.2 %China: 0.2 %上海: 0.3 %上海: 0.3 %北京: 2.8 %北京: 2.8 %十堰: 0.3 %十堰: 0.3 %南通: 0.2 %南通: 0.2 %台北: 0.2 %台北: 0.2 %台州: 0.3 %台州: 0.3 %哥伦布: 0.3 %哥伦布: 0.3 %天津: 0.3 %天津: 0.3 %广州: 0.2 %广州: 0.2 %张家口: 2.0 %张家口: 2.0 %成都: 0.2 %成都: 0.2 %新乡: 0.5 %新乡: 0.5 %杭州: 0.3 %杭州: 0.3 %江门: 0.2 %江门: 0.2 %淮南: 0.2 %淮南: 0.2 %深圳: 8.6 %深圳: 8.6 %湖州: 0.2 %湖州: 0.2 %漯河: 0.3 %漯河: 0.3 %潍坊: 0.3 %潍坊: 0.3 %石家庄: 2.8 %石家庄: 2.8 %芒廷维尤: 12.1 %芒廷维尤: 12.1 %芝加哥: 0.2 %芝加哥: 0.2 %衢州: 0.2 %衢州: 0.2 %西宁: 62.0 %西宁: 62.0 %西安: 0.2 %西安: 0.2 %郑州: 0.5 %郑州: 0.5 %长沙: 0.3 %长沙: 0.3 %青岛: 0.2 %青岛: 0.2 %其他其他CantonChina上海北京十堰南通台北台州哥伦布天津广州张家口成都新乡杭州江门淮南深圳湖州漯河潍坊石家庄芒廷维尤芝加哥衢州西宁西安郑州长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2612) PDF downloads(787) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return