Cheng Dan, Yang Qin, Cai Qiang, et al. Delaunay triangulation and Voronoi diagrams for Riemannian manifolds[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(8): 962-967. (in Chinese)
Citation: Duan Hongjie, Yan Deyuan. Investigation on CAD of Composite Materials Entire-Body Special-Shaped Component[J]. Journal of Beijing University of Aeronautics and Astronautics, 1999, 25(5): 585-587. (in Chinese)

Investigation on CAD of Composite Materials Entire-Body Special-Shaped Component

  • Received Date: 29 Oct 1998
  • Publish Date: 31 May 1999
  • For entire-body special-shaped component such as multi-branch entire-body special-shaped hollow composite material tressel, the complex curved surface construction and continuity in laying fiber become obstacle in CAD. So block-modeling and grid-refining are used to control the direction of the surface and generate equal-space grids. As a result, it is easier to generate the grids.The order and direction of the board layer are changed, the mechanical properties is analyzed and the design of component is optimized by means of testing and simulating with finite element software. The entire-body special-shaped racing bicycle,shaped by pouring resin into sewing exemplar, is proved to be acceptable after experiment and checking.This means that the method is practicable and can be used to design components of either aerostat and space craft or civil product.

     

  • 1. 段红杰.复合材料赛车仿生形态车架的CAD技术研究:[学位论文].北京:北京航空航天大学机电工程系,1998 2. 陈立周主编.机械优化设计方法.北京:冶金工业出版社,1995 3. 蔡为仑(美).复合材料设计.北京:科学出版社,1989 4. 崔俊芝,梁 俊.现代有限元软件方法.北京:国防工业出版社,1995
  • Relative Articles

    [1]XU M,LI Y,GAO J,et al. Design of aircraft anti-skid braking system integral sliding mode control system based on novel reaching law[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1107-1116 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0185.
    [2]YIN W Z,LIAN D P,LI K Y,et al. Manipulator force/position hybrid control based on staged adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):161-166 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0955.
    [3]ZHEN Chong, FENG Xinyu. Carrier-based aircraft direct lift control based on sliding mode observer and non-linear dynamic inversion technology[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0373
    [4]MA S H,ZHANG D,WANG M Y,et al. Directed interactive topology optimization design for multi-agent affine formation maneuver control[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(4):1367-1376 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0180.
    [5]TIAN D K,ZHANG J W,JIN L,et al. Design and analysis of morphing wing mechanism based on equilateral Bennett mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(3):742-752 (in Chinese). doi: 10.13700/j.bh.1001-5965.2023.0139.
    [6]MA Z W,BAI H,CHEN H B,et al. RBF neural network robust adaptive control of quadrotor aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1620-1628 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0595.
    [7]SUN X Z,WU J,SHI L X,et al. Dynamic force equalization for dual redundancy electro-mechanical actuation system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(4):1208-1218 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0466.
    [8]YANG R R,ZHANG L,ZHAO J L,et al. Nonlinear variable damping integral sliding mode control for electro-hydrostatic actuator[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):163-172 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0252.
    [9]ZHANG Y,YU H,YANG X X,et al. Adaptive group formation tracking-containment control for UAV swarm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(1):97-109 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0264.
    [10]ZUO L,ZHANG X L,LI Z Y,et al. UAV control law design method based on active-disturbance rejection control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1512-1522 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0488.
    [11]ZHAI You-hong, LI Chun-tao, SU Zi-kang, LI Xue-bing. Neural network incremental dynamic inversion target drone somersault maneuver control[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0690
    [12]FENG Yu-xuan, HUO Ying-yuan, LI Jun-jie. Design of multiple-input/multiple-output control law for active flutter suppression of flying-wing aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0144
    [13]GENG Z W,ZHANG J,KONG N,et al. Design and analysis of space repeatable mechanical locking and electromagnetic unlocking mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3947-3956 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0918.
    [14]LIU S Y,YANG H L,ZHANG Z G,et al. Vibration control of flexible spacecraft with output constraints and external disturbances[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1560-1567 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0622.
    [15]FU H Q,WU S F,LIU M L,et al. Disturbance-observer based adaptive control for space inertial sensor[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2799-2806 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0734.
    [16]TANG Z Y,MA F Y,PEI Z C. Improved PSO-RBF neural network adaptive sliding mode control for quadrotor systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1563-1572 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0477.
    [17]REN Hao-yuan, CHENG Tao, ZHANG Cheng, CAI Yi-peng, LIU Fei, ZHANG Wei-qun. A flutter suppression method for multi-freepalys folding fin based on sliding mode control and fin shaft drive[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0466
    [18]HE T Y,DONG Y,WANG H,et al. Design and optimization of modular parabolic deployable mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2473-2481 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0652.
    [19]HE L T,FANG H R,CHEN Y F,et al. Design and performance analysis of spatial large extension parallel mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1722-1734 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0548.
    [20]DU Xianchen, LIU Xue'ao, DONG Yang, WANG Hui, HE Tianyu, WANG Chunjie. Design and dimensional synthesis of a variable wing sweep mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2502-2509. doi: 10.13700/j.bh.1001-5965.2021.0125
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(2753) PDF downloads(387) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return